ISSN : 2583-2646

Analysis of Various Techniques and Methodologies for Heart Disease Prediction a Review

ESP Journal of Engineering & Technology Advancements
© 2023 by ESP JETA
Volume 3  Issue 2
Year of Publication : 2023
Authors : Rajendra L Gaike, Vandana Malode


Rajendra L.Gaike, Vandana Malode, 2023. "Analysis of Various Techniques and Methodologies for Heart Disease Prediction a Review" ESP Journal of Engineering & Technology Advancements  3(2): 24-34.


One of the most important organs for the normal operation of our body is the heart. A WHO investigation revealed that cardiovascular diseases consistently account for 31% of deaths worldwide (CVDs). Additionally, low- and middle-income nations like India account for more than 75% of these deaths. Predicting whether or whether CVDs will occur inside a mortal body is the key challenge. There are many medical devices that can be used to diagnose heart diseases, but they have drawbacks such as being extremely expensive and not being able to accurately predict cardiac conditions (10). Age, coitus, blood pressure, cholesterol, blood sugar, and diabetes, as well as other lifestyle factors including rotundness, eating unhealthy foods, not exercising as much, smoking, drinking alcohol, etc. In this proposed research work the review of the different prediction techniques and methodologies have been enlightened with various research literatures. This will give the analysis of the different technologies.


[1] E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das,R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie et al.,“Heart disease and stroke statistics—2017 update: a report from theamerican heart association,” Circulation, vol. 135, no. 10, pp. e146–e603, 2017.
[2] E. Wilkins, L. Wilson, K. Wickramasinghe, P. Bhatnagar, J. Leal,R. Luengo-Fernandez, R. Burns, M. Rayner, and N. Townsend, “Europeancardiovascular disease statistics 2017,” 2017.
[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.
[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.
[5] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep neural networks with multitask learning,” in Proceedings of the 25th international conference on Machine learning. ACM, 2008, pp. 160–167.
[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee international conference on. IEEE, 2013, pp. 6645–6649.
[7] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of dna-and rna-binding proteins by deep learning,” Nature biotechnology, vol. 33, no. 8, p. 831, 2015.
[8] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,” Large-scale kernel machines, vol. 34, no. 5, pp. 1–41, 2007.
[9] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.
[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.
[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press Cambridge, 2016, vol. 1.
[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315–323.
[13] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1, pp. 29–36, 1982.
[14] L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
[16] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527– 1554, 2006.
[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.
[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” Journal of Machine Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.
[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[22] K. Cho, B. Van Merri¨enboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259, 2014.
[23] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii , a freely accessible critical care database,” Scientific data, vol. 3, p. 160035, 2016. [Online]. Available:
[24] S. Kweon, Y. Kim, M.-j. Jang, Y. Kim, K. Kim, S. Choi, C. Chun, Y.-H. Khang, and K. Oh, “Data resource profile: the korea national health and nutrition examination survey (knhanes),” International journal of epidemiology, vol. 43, no. 1, pp. 69–77, 2014. [Online]. Available:
[25] W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multiparameter respiratory rate estimation from the photoplethysmogram,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 7, pp. 1946–1953, 2013. [Online]. Available: http: // [26] F. Nolle, F. Badura, J. Catlett, R. Bowser, and M. Sketch, “Crei-gard, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology, vol. 13, pp. 515–518, 1986. [Online]. Available:
[27] G. Moody, “A new method for detecting atrial fibrillation using rr intervals,” Computers in Cardiology, pp. 227–230, 1983. [Online]. Available:
[28] D. S. Baim, W. S. Colucci, E. S. Monrad, H. S. Smith, R. F. Wright, A. Lanoue, D. F. Gauthier, B. J. Ransil, W. Grossman, and E. Braunwald, “Survival of patients with severe congestive heart failure treated with oral milrinone,” Journal of the American College of Cardiology, vol. 7, no. 3, pp. 661–670, 1986. [Online]. Available:
[29] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online]. Available:
[30] S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466–470, 2007. [Online]. Available:
[31] F. Jager, A. Taddei, G. B. Moody, M. Emdin, G. Antoliˇc, R. Dorn, A. Smrdel, C. Marchesi, and R. G. Mark, “Long-term st database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia,” Medical and Biological Engineering and Computing, vol. 41, no. 2, pp. 172–182, 2003. [Online]. Available:
[32] G. B. Moody and R. G. Mark, “The impact of the mit-bih arrhythmia database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001. [Online]. Available:
[33] G. B. Moody, W. Muldrow, and R. G. Mark, “A noise stress test for arrhythmia detectors,” Computers in cardiology, vol. 11, no. 3, pp. 381–384, 1984. [Online]. Available:
[34] R. L. Goldsmith, J. T. Bigger, R. C. Steinman, and J. L. Fleiss, “Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men,” Journal of the American College of Cardiology, vol. 20, no. 3, pp. 552–558, 1992. [Online]. Available:
[35] N. Iyengar, C. Peng, R. Morin, A. L. Goldberger, and L. A. Lipsitz, “Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 271, no. 4, pp. R1078–R1084, 1996. [Online]. Available:
[36] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson et al., “An open access database for the evaluation of heart sound algorithms,” Physiological Measurement, vol. 37, no. 12, p. 2181, 2016. [Online]. Available:
[37] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der ekgsignaldatenbank cardiodat der ptb ¨uber das internet,” Biomedizinische Technik/Biomedical Engineering, vol. 40, no. s1, pp. 317–318, 1995.
[38] P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, “A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg,” in Computers in cardiology 1997. IEEE, 1997, pp. 673–676. [Online]. Available:
[39] S. D. Greenwald, R. S. Patil, and R. G. Mark, “Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information,” in Computers in Cardiology 1990, Proceedings. IEEE, 1990, pp. 461–464. [Online].
[40] I. Silva, J. Behar, R. Sameni, T. Zhu, J. Oster, G. D. Clifford, and G. B. Moody, “Noninvasive fetal ecg: the physionet/computing in cardiology challenge 2013,” in Computing in Cardiology Conference (CinC), 2013. IEEE, 2013, pp. 149–152. [Online]. Available:
[41] M.-H. Wu and E. Y. Chang, “Deepq arrhythmia database: A large-scale dataset for arrhythmia detector evaluation,” in Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care. ACM, 2017, pp. 77–80.
[42] P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick, and G. Wright, “Evaluation framework for algorithms segmenting short axis cardiac MRI,” in The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, 2009. [Online]. Available:
[43] C. G. Fonseca, M. Backhaus, D. A. Bluemke, R. D. Britten, J. D. Chung, B. R. Cowan, I. D. Dinov, J. P. Finn, P. J. Hunter, A. H. Kadish et al., “The cardiac atlas project - an imaging database for computational modeling and statistical atlases of the heart,” Bioinformatics, vol. 27, no. 16, pp. 2288–2295, 2011. [Online]. Available:
[44] C. Petitjean, M. A. Zuluaga, W. Bai, J.-N. Dacher, D. Grosgeorge, J. Caudron, S. Ruan, I. B. Ayed, M. J. Cardoso, H.-C. Chen et al., “Right ventricle segmentation from cardiac mri: a collation study,” Medical image analysis, vol. 19, no. 1, pp. 187–202, 2015. [Online]. Available:
[45] A. Asman, A. Akhondi-Asl, H. Wang, N. Tustison, B. Avants, S. K. Warfield, and B. Landman, “Miccai 2013 segmentation algorithms, theory and applications (sata) challenge results summary,” in MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA), 2013.
[46] D. F. Pace, A. V. Dalca, T. Geva, A. J. Powell, M. H. Moghari, and P. Golland, “Interactive whole-heart segmentation in congenital heart disease,” in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015, pp. 80–88. [Online]. Available:
[47] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. G. Ballester et al., “Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?” IEEE Transactions on Medical Imaging, 2018.
[48] A. Andreopoulos and J. K. Tsotsos, “Efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri,” Medical Image Analysis, vol. 12, no. 3, pp. 335–357, 2008. [Online]. Available:
[49] “Data science bowl cardiac challenge data,” 2016. [Online]. Available:
[50] J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. Pluim, R. Duits, and B. M. ter Haar Romeny, “Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores,” IEEE transactions on medical imaging, vol. 35, no. 12, pp. 2631–2644, 2016.
[51] J. Staal, M. D. Abr`amoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE transactions on medical imaging, vol. 23, no. 4, pp. 501–509, 2004. [Online]. Available:
[52] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Medical imaging, vol. 19, no. 3, pp. 203–210, 2000. [Online]. Available:
[53] C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson, “Measuring retinal vessel tortuosity in 10-year-old children: validation of the computerassisted image analysis of the retina (caiar) program,” Investigative ophthalmology & visual science, vol. 50, no. 5, pp. 2004–2010, 2009. [Online]. Available:
[54] M. Zubair, J. Kim, and C. Yoon, “An automated ecg beat classification system using convolutional neural networks,” in IT Convergence and Security (ICITCS), 2016 6th International Conference on. IEEE, 2016, pp. 1–5.
[55] D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ecg signals based on 1d convolution neural network,” in e-Health Networking, Applications and Services (Healthcom), 2017 IEEE 19th International Conference on. IEEE, 2017, pp. 1–6.
[56] M.-H. Wu, E. J. Chang, and T.-H. Chu, “Personalizing a generic ecg heartbeat classification for arrhythmia detection: A deep learning approach,” in 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018, pp. 92–99.
[57] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, “Automated detection of arrhythmias using different intervals of tachycardia ecg segments with convolutional neural network,” Information sciences, vol. 405, pp. 81–90, 2017.
[58] Z. Yao, Z. Zhu, and Y. Chen, “Atrial fibrillation detection by multiscale convolutional neural networks,” in Information Fusion (Fusion), 2017 20th International Conference on. IEEE, 2017, pp. 1–6.
[59] Y. Xia, N. Wulan, K. Wang, and H. Zhang, “Detecting atrial fibrillation by deep convolutional neural networks,” Computers in biology and medicine, vol. 93, pp. 84–92, 2018.
[60] R. S. Andersen, A. Peimankar, and S. Puthusserypady, “A deep learning approach for real-time detection of atrial fibrillation,” Expert Systems with Applications, 2018.
[61] A. Badnjevi´c, M. Cifrek, R. Magjarevi´c, and Z. Dˇzemi´c, Inspection of Medical Devices: For Regulatory Purposes. Springer, 2017.
[62] U. R. Acharya, H. Fujita, S. L. Oh, U. Raghavendra, J. H. Tan, M. Adam, A. Gertych, and Y. Hagiwara, “Automated identification of shockable and non-shockable li fe-threatening ventricular arrhythmias using convolutional neural network,” Future Generation Computer Systems, vol. 79, pp. 952–959, 2018.
[63] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Automated detection of coronary artery disease using different durations of ecg segments with convolutional neural network,” Knowledge-Based Systems, vol. 132, pp. 62–71, 2017.
[64] J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. Sricharan, “Recognizing abnormal heart sounds using deep learning,” arXiv preprint arXiv:1707.04642, 2017.
[65] D. Kucharski, D. Grochala, M. Kajor, and E. Ka´ntoch, “A deep learning approach for valve defect recognition in heart acoustic signal,” in International Conference on Information Systems Architecture and Technology. Springer, 2017, pp. 3–14.
[66] S. P. Shashikumar, A. J. Shah, Q. Li, G. D. Clifford, and S. Nemati, “A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology,” in Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on. IEEE, 2017, pp. 141– 144.
[67] G. Sebastiani and P. Barone, “Mathematical principles of basic magnetic resonance imaging in medicine,” Signal Processing, vol. 25, no. 2, pp. 227–250, 1991.
[68] L. K. Tan, Y. M. Liew, E. Lim, and R. A. McLaughlin, “Cardiac left ventricle segmentation using convolutional neural network regression,” in Biomedical Engineering and Sciences (IECBES), 2016 IEEE EMBS Conference on. IEEE, 2016, pp. 490–493.
[69] L. V. Romaguera, M. G. F. Costa, F. P. Romero, and C. F. F. Costa Filho, “Left ventricle segmentation in cardiac mri images using fully convolutional neural networks,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134. International Society for Optics and Photonics, 2017, p. 101342Z.
[70] R. P. Poudel, P. Lamata, and G. Montana, “Recurrent fully convolutional neural networks for multi-slice mri cardiac segmentation,” in Reconstruction, Segmentation, and Analysis of Medical Images. Springer, 2016, pp. 83–94.
[71] E. Konukoglu, “An exploration of 2d and 3d deep learning techniques for cardiac mr image segmentation,” in Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with
[72] S. Wang, Y. Yin, G. Cao, B. Wei, Y. Zheng, and G. Yang, “Hierarchical retinal blood vessel segmentation based on feature and ensemble learning,” Neurocomputing, vol. 149, pp. 708–717, 2015.
[73] L. Zhou, Q. Yu, X. Xu, Y. Gu, and J. Yang, “Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement,” Computer methods and programs in biomedicine, vol. 148, pp. 13–25, 2017.
[74] M. Haloi, “Improved microaneurysm detection using deep neural networks,” arXiv preprint arXiv:1505.04424, 2015.
[75] L. Giancardo, K. Roberts, and Z. Zhao, “Representation learning for retinal vasculature embeddings,” in Fetal, Infant and Ophthalmic Medical Image Analysis. Springer, 2017, pp. 243–250.
[76] J. I. Orlando, E. Prokofyeva, M. del Fresno, and M. B. Blaschko, “An ensemble deep learning based approach for red lesion detection in fundus images,” Computer methods and programs in biomedicine, vol. 153, pp. 115–127, 2018.
[77] N. Lessmann, I. Iˇsgum, A. A. Setio, B. D. de Vos, F. Ciompi, P. A. de Jong, M. Oudkerk, P. T. M. Willem, M. A. Viergever, and B. van Ginneken, “Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest ct,” in Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785.
[78] G. Carneiro, J. C. Nascimento, and A. Freitas, “The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods,” IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 968–982, 2012.


Heart Disease Prediction, Cardiovascular Diseases, Artificial Neural Networks (ANN), Deep Learning, Fuzzy Logic, Data Mining, Genetic Algorithm, Arrythmia.