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Abstract: Modern data ecosystems, encompassing distributed analytics platforms and big data pipelines, have 

propelled the need for efficient, scalable file formats that handle vast volumes of structured and semi-structured data. 

Among the most prominent are Avro, Parquet, and ORC each offering unique strengths in schema evolution, columnar 

storage, compression, and read performance. This paper provides a comprehensive analysis of these formats outlining 

their architectural underpinnings, typical usage scenarios, integration with frameworks (e.g., Apache Spark, Hive), 

and the performance trade-offs that emerge under large-scale workloads. We begin by surveying the evolution of data 

storage in distributed processing (MapReduce to Spark) and how Avro, Parquet, and ORC each address challenges such 

as schema evolution, compression, and data skipping. We then detail the internal row vs. columnar approaches of Avro 

vs. Parquet/ORC, exploring how these design choices impact I/O overhead, CPU usage, and analytics queries. Through 

extensive real-world references, code snippets (like sample Avro schemas or Parquet read code) and diagrams, we 

highlight best practices (like partitioning, predicate pushdown, Sargable queries) and anti-patterns (excessive small 

files, ignoring compression benefits). Ultimately, this paper serves as a practical guide for data engineers, architects, 

and platform teams deciding among Avro, Parquet, or ORC for high-performance data storage in modern big data 

systems. 

Keywords: AVRO, Parquet, ORC, Columnar Storage, Big Data, Schema Evolution, Data Analytics, Apache Spark, 

Compression, High Performance. 

I. INTRODUCTION 

A. The Evolving Data Landscape 

Big data workloads have transformed from batch-driven MapReduce to more interactive, real-time analytics using 

engines like Apache Spark, Hive, or Presto. These technologies read and write massive data sets stored on distributed file 

systems (HDFS, S3, ADLS). As data volumes soared, row-oriented formats (CSV, JSON) struggled under scanning 

overhead or lacked robust schema definitions. This spurred the rise of specialized file formats Avro, Parquet, ORC that 

optimize for size, schema manageability, and query performance [1][2]. Understanding the architectural differences 

between storage formats is fundamental to evaluating their performance characteristics and use cases. Figure 1 illustrates 

the core structural differences between Avro, row-based storage, Parquet's columnar approach, and ORC's hybrid 

architecture: 

 
Figure 1: Architectural comparison of Avro, Parquet, and ORC storage formats 

B. Purpose and Scope 

This paper compares Avro, Parquet, and ORC focusing on: 

 Design Fundamentals: Row vs. columnar, schema evolution, compression, indexing. 

 Performance: Query speeds, partial column reads, overhead under large-scale analytics. 

 Integrations: Ecosystem usage with Spark, Hive, streaming pipelines. 
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 Best Practices: Partitioning, data modeling patterns, file sizing. 

 Anti-Patterns: E.g., ignoring columnar formats for wide analytics queries. 

This analysis will help data architects choose appropriate storage formats for varied workloads, from standard 

ETL processes to advanced interactive queries in high-performance data lakes. 

II. BACKGROUND: FROM ROW STORAGE TO COLUMNAR PARADIGMS 

A. Row-Oriented vs. Columnar 

Traditionally, row-oriented formats (CSV, JSON) store data row by row, easy for row insertion or iterative row 

processing but suboptimal for scanning large subsets of columns. Columnar designs store each column’s data together, 

enabling read operations that skip unneeded columns, drastically reducing I/O for wide tables with selective column 

queries. This approach is especially beneficial for analytical workloads with large numeric or repeated data [3][4]. 

B. The Emergence of Specialized Formats 

Avro initially addressed schema evolution in streaming contexts, providing a compact binary row-based format 

with a robust schema definition. Parquet, on the other hand, brought forward a columnar storage design that 

incorporates advanced compression and encoding techniques for improved efficiency. ORC (Optimized Row Columnar) 

emerged from the Apache Hive community, also focusing on columnar layout but with additional indexing and statistics 

[5]. 

III. AVRO: ROW-BASED WITH EVOLVING SCHEMAS 

A. Avro Architecture 

Apache Avro is a row-oriented format storing data in binary while embedding a JSON-based schema. It 

emphasizes: 

 Schema evolution: Writers embed the schema; readers fetch the writer’s schema and reconcile it with the local 

(reader) schema. 

 Compactness: Binary encoding with optional compression (like deflate). 

 Row-based scanning: Data is laid out by row (though Avro blocks can group multiple records). 

Snippet (Basic Avro schema for user): 

 

B. Schema Evolution 

A hallmark of Avro is how it decouples writer and reader schemas. If a field is added or removed, the system can apply 

default values or ignore extra fields. This allows pipeline updates without forcibly rewriting historical data or re-

labelling columns, which is beneficial in streaming data flows or environments that need robust 

forward/backward compatibility [6]. 

C. Performance Characteristics 

Avro is relatively efficient for row-based reads or streaming consumption. However, it is less optimal for typical 

analytical queries that only need a subset of columns. Entire rows must be read, then the unneeded fields are 

discarded, which can hamper speed under wide schemas. As such, Avro is more popular in messaging or log 

ingestion, or when needing flexible schema evolution for row-level data. 

D. Anti-Patterns with Avro 

 Storing large wide tables intended for columnar-based analytics. 

 Ignoring compression: Potentially large file sizes. 

 Neglecting schema documentation: Confusing merges if no consistent naming or type definitions are used. 

{ 

  "type": "record", 

  "name": "User", 

  "fields": [ 

    {"name": "user_id", "type": "string"}, 

    {"name": "age", "type": "int", "default": 0}, 

    {"name": "email", "type": ["null", "string"], "default": null} 

  ] 

} 
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IV. PARQUET: A COLUMNAR STANDARD IN DATA LAKES 

A. Core Concepts 

Apache Parquet is a columnar file format widely adopted in data lakes (on HDFS, S3) and used by Spark, Hive, 

Presto, etc. It organizes data in row groups, subdivided by columns. Each column chunk uses compression and encoding 

(e.g., run-length encoding for repeated integers). This structure means queries that need a few columns skip reading 

unrelated data, drastically reducing I/O [7]. 

 
Figure 2: Parquet file format 

B. Predicate Pushdown and Data Skipping 

Parquet files store min/max stats per column chunk and optional bloom filters or dictionaries, enabling “predicate 

pushdown.” For instance, if a query filters col1 < 100, Parquet can skip row groups whose min col1 is >100. This 

optimization yields massive performance gains for analytics on large data sets [8]. 

C. Compression and Encoding 

Parquet supports: 

 Snappy, GZIP, LZO for compression. 

 Run-Length Encoding (RLE) and Dictionary Encoding are utilized to minimize redundancy by efficiently handling 

repeated values. 

 Flexible row group sizes (commonly 128 MB or bigger), balancing compression ratio vs. parallel read concurrency. 

D. Use Cases and Strengths 

Parquet thrives in analytical queries scanning partial columns: big data analytics, data lake queries, summary 

aggregates, machine learning feature extraction. Many frameworks prefer Parquet as a “gold standard” format for 

columnar data, often using Spark with DataFrame.write.parquet() calls [9]. 

E. Anti-Patterns with Parquet 

 Small file problem: Writing numerous small Parquet files (below typical row group size). Merging or compaction is 

needed to preserve efficiency. 

 Overly wide row group: If the row group is too large, scanning might hamper parallel reads or lead to memory 

overhead. 

 Ignoring data distribution: If data is unsorted or random, min/max skipping might be less effective. 

V. ORC: OPTIMIZED ROW COLUMNAR FROM HIVE 

A. Design and Origins 

ORC (Optimized Row Columnar) originated in the Apache Hive project to improve on row-based formats. Like 

Parquet, it stores column data together in stripes. Each stripe has an index, enabling skipping of irrelevant data at the 

column chunk level. The format includes row indexes, advanced statistics, and potential bloom filters [10]. 
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B. Stripe Layout and Indexing 

ORC structures its data into segments known as "stripes," which are generally around 256 MB in size. Each stripe has 

an index, including min/max values, row positions, bloom filters. This indexing can significantly speed up queries by 

scanning only relevant stripes and columns. ORC’s specialized indexes can be more robust in certain queries than Parquet’s 

approach, though Parquet and ORC remain quite similar functionally [11]. 

C. Usage with Hive and Big Data Tools 

While Parquet is more widely used across Spark or Presto ecosystems, ORC sees heavy usage in Hive. Support for 

ORC also exists in Spark, though typically Parquet remains the default. For teams heavily reliant on Hive-based data lakes, 

ORC can yield strong compression and read speeds. 

D. Anti-Patterns 

 ORC used in a system with no indexing or skipping: If the engine doesn’t exploit ORC’s indexes, the advantage is 

partially lost. 

 Ignoring stripe size tuning: Potential mismatch between cluster resources and stripe sizes, leading to suboptimal 

parallelism or large memory usage. 

VI. DETAILED COMPARISON: AVRO VS. PARQUET VS. ORC 

A. Data Model and Storage 

Avro: Row-based, storing entire records. Emphasizes schema evolution. Parquet: Columnar, organizes data in row 

groups. Typically best for analytical partial column queries. ORC: Columnar, organizes data in stripes with rich indexes, 

beneficial for Hive-based queries [12]. 

B. Query Patterns 

 Avro: Good for row-level read or streaming ingestion. Less efficient for partial column analytics. 

 Parquet: Excellent for typical data lake analytics, partial column scans, big data aggregates. 

 ORC: Similar to Parquet in approach, strong synergy with Hive, advanced indexing strategies. 

C. Schema Evolution and Suitability 

 Avro: Known for robust forward/backward schema evolution. Writers and readers can differ in schema. 

 Parquet: More limited schema evolution; typically new columns can be appended, but older queries or metadata must 

be handled carefully. 

 ORC: Also supports schema evolution, though less highlight than Avro’s approach. 

Table 3: Comparison of Avro, Parquet, and ORC Format 

Feature Avro Parquet ORC 

Storage Format Row-based, blocks Columnar, row groups Columnar, stripes 

Schema Evolution Very strong Moderate (add columns) Some (similar to Parquet) 

Typical Workloads Streaming/Row ingestion, 

message data 

Analytics, partial column 

scans, data lakes 

Hive-based analytics, partial 

column scans 

Indexing/Skipping None built-in, row-oriented Good stats in row groups, 

min/max skipping 

Stripe-level indexes, bloom 

filters 

VII. PERFORMANCE BENCHMARKS 

A. Analytical Queries 

Empirical results from prior studies reveal that for wide table queries that only reference a subset of columns, 

Parquet or ORC can yield 2-10x speedups compared to row-based formats. The difference emerges from skipping entire 

columns. Avro, lacking columnar skipping, must read full rows [13]. 

B. Write Overhead 

Avro is typically faster to write in streaming contexts, as row-based data can be appended easily with minimal 

overhead. Parquet and ORC need buffering to form row groups or stripes, incurring higher memory usage or latency. For 

large-scale batch loads, columnar pay off significantly in subsequent reads [14]. 

C. Anti-Pattern: Using Columnar for Small, Frequent Writes 

 Issue: Inserting single rows frequently is inefficient in columnar. 

 Solution: Buffer writes or rely on row-based format for streaming ingestion, then convert to columnar for analysis if 

needed. 
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VIII. INTEGRATIONS WITH BIG DATA TOOLS 

A. Apache Spark 

Spark can read/write all three: Avro, Parquet, ORC. By default, Spark often uses Parquet for dataframes. Avro 

requires an additional library, typically used in streaming pipelines or confluent schema registries. ORC is supported but 

less popular outside Hive-based ecosystems. 

 

B. Hive and Presto 

Hive historically used ORC as a default optimized format. Presto/Trino handle Avro but excel with columnar 

(Parquet, ORC). Schema evolution might be trickier with columnar unless the engine is well-configured for partial 

columns or updated table definitions [15]. 

C. Anti-Pattern: Mixed or Inconsistent Formats in the Same Table 

Multiple files in the same table partition might use different formats, confusing the engine or leading to partial 

read failures. Solutions: unify to a single format or use separate location/prefix for each format. 

IX. REAL-WORLD CASE STUDY #1: DATA LAKE FOR ANALYTICS 

A. Scenario 

A retail analytics pipeline ingests daily transactions as Avro for streaming records, then performs a nightly 

conversion to Parquet stored in an S3-based data lake. Analysts use Spark SQL for partial column queries on the Parquet 

data, achieving faster interactive queries [16]. 

Benefits: Avro’s easy schema evolution for ingestion, plus Parquet’s columnar advantage for analytics. 

Challenges: Need an automated job that merges incremental files, ensuring large row groups and minimal small-file 

overhead. 

X. REAL-WORLD CASE STUDY #2: GRAPHICAL QUERY WITH A COLUMNAR BASE 

A. Scenario 

A logistics platform stores adjacency data in a graph engine, but final analytics aggregates use ORC in a Hive 

cluster. This approach merges the best of both worlds: real-time path calculations in the graph DB, then nightly ETLs 

produce columnar data sets for OLAP. Queries that do “Where location=?” quickly skip stripes in ORC [17]. 

Observations: The synergy between a specialized graph DB for real-time adjacency queries and columnar for 

offline aggregates improved developer velocity, ensuring each data set was optimized for its unique usage pattern. 

XI. ANTI-PATTERN RECAP 

 Using Avro for columnar analytics: Suboptimal queries if only a subset of columns is needed. 

 Forcing schema evolution in columnar: Potential complicated re-writes if large changes are needed. 

 Ignoring compression settings in Parquet/ORC, leading to large or slow reads. 

 Tiny files in columnar: Overloading the metadata overhead, reducing the benefit of row groups/stripes. 

XII. BEST PRACTICES 

 Hybrid Pipeline: Ingest as Avro for streaming or row-based ingestion, convert to Parquet or ORC for heavy analytics. 

 Partitioning: Partition data sets by date, region, or other high-cardinality fields, enabling partition pruning. 

 Tune File Sizes: E.g., ~128-256 MB per Parquet row group or ORC stripe for optimum parallel reads. 

 Schema Evolution Plans: For columnar files, plan how to add columns or new data without rewriting huge data sets. 

 Validate Tools: Ensure the analytics engine (Spark, Presto, Hive) properly implements predicate pushdown, column 

skipping, or advanced indexing for best performance. 

XIII. FUTURE DIRECTIONS 

 Multi-format bridging: Tools like Apache Iceberg or Delta Lake unify table management over Parquet/ORC, offering 

transactional updates. 

 Z-Order or advanced indexing: E.g., improved data skipping using advanced index structures. 

val df = spark.read.parquet("/path/to/parquet") 

df.show() 

df.write.format("avro").save("/path/to/avro_out") 
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 Streaming + Columnar: Emerging solutions handle near-real-time appends in columnar files, bridging the gap 

between batch columnar and streaming ingestion. 

 Encrypted Data: Many data lakes require encryption at rest or in flight, so advanced formats might embed key 

management at the file/column level [18]. 

XIV. CONCLUSION 

Avro, Parquet, and ORC each represent distinct solutions to the evolving demands of big data storage: 

 Avro: Row-based, simple schema evolution, well-suited for streaming ingestion or row-level events. 

 Parquet: Columnar, widely supported, ideal for partial column queries in data lakes, efficient compression, broad 

Spark integration. 

 ORC: Another columnar format with advanced indexing, bloom filters, strong synergy in Hive-based ecosystems. 

Selecting the right format depends on the workload streaming vs. batch analytics, partial column queries vs. row 

writes, or advanced indexing needs vs. simpler ingestion. In practice, many organizations adopt a multi-format approach, 

using Avro for ingestion and Parquet/ORC for final analytical storage. By understanding each format’s architecture, 

performance trade-offs, and best usage patterns, data engineers and platform architects can shape robust pipelines that 

address the scale and complexity of modern data systems. As data ecosystems continue to evolve, new solutions (like 

Apache Iceberg, Delta Lake, or advanced merges) may further unify or extend the capabilities of these file formats. 

Nonetheless, Avro, Parquet, and ORC remain foundational pillars for high-performance data storage in an era of 

distributed analytics and large-scale computing. 
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