
ESP-JETA
ESP Journal of Engineering & Technology Advancements

ISSN: 2583-2646 / Volume 3 Issue 4 December 2023 / Page No: 138-148
Paper Id: JETA-V3I8P116 / Doi: 10.56472/25832646/JETA-V3I8P116

This is an open access article under the CCBY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/2.0/)

Orignai Article

Artificial Intelligence-Powered Optimization of Industrial IoT

Networks Using Python-Based Machine Learning
Ruchi Patel

Independent Researcher.

Received Date: 26 November 2023 Revised Date: 09 December 2023 Accepted Date: 24 December 2023

Abstract: Through sophisticated monitoring and real-time data sharing, industrial Internet of Things (IIoT) networks
are revolutionizing smart manufacturing. With the increasing complexity of IIoT infrastructures, traditional methods
often fail to deliver fault-resilient and scalable performance. With the goal of improving system dependability and
operational safety, this paper presents a method to sensor system defect detection and classification based on deep
learning (DL), for the purpose of improving IIoT network defect prediction. Using PyTorch and Scikit-Learn in a high-
throughput Python industrial simulation environment. The Long Short-Term Memory (LSTM) model had a better fault
detection accuracy of 99.33% than the Random Forest (RF) (99%), Multilayer Perceptron (MLP) (96.6%), and
FuzHD++ (92%). According to the confusion matrix, the model showed minimal false positives (FP) and false
negatives (FN) with 99.38% accuracy, 99.87% recall, and 99.66% F1-score. The robustness and generalizability of the
model were demonstrated by the loss plots and training and validation accuracy, which demonstrated strong

convergence with minimal overfitting. This method improves operational uptime and system dependability in IIoT
scenarios while simultaneously improving real-time issue detection. Overall, the findings illustrate the efficacy of
LSTM-based deep learning in enhancing defect resilience and predictive maintenance in intelligent industrial networks.

Keywords: Industrial Internet of Things (IIoT), Fault Detection, Predictive Maintenance, Sensor Networks, Network
Optimization, Python, Machine Learning, Intel Berkeley Research Lab Sensor Data.

I. INTRODUCTION
 In the era of digital transformation, industries are increasingly embracing automation, connectivity, and data-driven
intelligence to enhance efficiency, productivity, and innovation. As operational complexity and global competition continue to
grow, traditional industrial management methods are proving inadequate [1]. To address these challenges, organizations are
adopting advanced technologies capable of delivering smarter, more responsive systems that adapt to dynamic environments
and enable real-time decision-making. The IIoT is a paradigm that brings physical assets, control systems and digital

technologies together through sensor-rich networks and is a central enabler of this transformation. These IIoT networks
provide a continuous, low-latency [2], low-bandwidth medium for data acquisition and communication across industrial
environments, giving deep insight into system behavior and supporting predictive maintenance as well as process automation
[3][4] and energy optimization. But modern IIoT deployments are complex and scaled and the data source is unreliable,
response time is slow and system is not intelligent enough to be optimized.

In order to reach the maximum potential of IIoT, there is a growing need for intelligent optimization techniques to
manage sensor data, detect faults proactively and adapt system parameters autonomously [5]. In general, traditional rule base
methods which rely on pre-defined thresholds and static configurations, fail to cope with dynamic industrial conditions and
large volumes of sensor data. As a result, they tend to generate high FP or miss sublet system anomalies which sometimes
causes inefficiencies and failures [6]. To fill this gap, AI and ML are used that provide robust resources for pattern recognition,
anomaly detection and predictive analytics. Because AI systems can use past and present sensor data to learn to recognize

normal and abnormal behaviour, they can improve system performance and they can make better decisions [7][8]. High
system uptime, reliability and responsiveness for success in IIoT environments makes these capabilities particularly
important.

The Python programming language forms to be central to the practical implementation of these AI-driven solutions, for
it offers a robust ecosystem of open source libraries and frameworks written specifically for data science and ML [9]. Scikit-
learn, TensorFlow, Keras, XGBoost, as well as Panda’s support end to end building of intelligent systems (data preprocessing,
visualization, model training, deployment, etc.). Because of its simplicity, versatility and ability to integrate with other systems
[10], Python is a good choice to build and implement AI applications in the IIoT infrastructures. The intent of this research is
to build on Python's development ecosystem and data driven modelling to create smart systems that enhance operational

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

139

resilience, reduce downtime and maximize sensor network performance. This work shows that AI is revolutionary in
manufacturing and how useful Python is for building intelligent, scalable IIoT applications.

A. Motivation and Contributions of the Study
This study's motivation stems from current IIoT developments. Which tend to be increasingly massive and complex

and play an increasingly important role in modern day industrial operations. The problem is to ensure reliability, efficiency
and fault tolerance, as these networks grow. Traditional network management approaches frequently fail because of the

dynamic and data-intensive nature of IIoT settings, which results in system inefficiencies, unexpected failures and operational
downtime. AI particularly ML integration into the IIoT networks offers a transformative possibility for IIoT network
optimization to achieve predictable faults prediction and proactive system management. This research contributes the
following key contributions:

• The data set that was used for this work was a real time sensor data from the Intel Berkeley Lab Research, where
defective sensors were identified using measurements of temperature, humidity, light, and voltage.

• A robust preprocessing pipeline that includes data cleaning, correlation analysis, SMOTE-based class balancing and
Min Max normalization was developed.

• Applied time-series feature engineering techniques, including rolling statistics, to extract time-related trends from the
sensor data.

• Proposed a neural network model with LSTM to efficiently learn temporal connections and identify problematic sensor

behavior.
• Visualization of training and validation loss curves demonstrating effective model convergence with minimal

overfitting, alongside confusion matrix plots highlighting the robustness of the model in accurately detecting sensor
states that are both healthy and malfunctioning with little FP and FN.

• Demonstrated model effectiveness using a standard matrix that include recall, accuracy, precision, and f1-score.

B. Structure of the Paper
The structure of this paper is as follows: Section II reviews related work on AI-based optimization in IIoT networks.

Model creation and data pretreatment are covered in Section III clarification of the approach. The study findings are covered in
Section IV. Key findings and recommendations for future research to increase IIoT dependability using AI are presented in
Section V.

II. LITERATURE REVIEW

This section reviews IIoT networks using ML, focusing on fault detection, predictive maintenance, and efficient
resource management to enhance reliability and system performance. Some of the previous works are:

Praveenchandar et al. (2022) invention focuses on Industrial accidents can be avoided by keeping an eye on and
managing dangerous poisonous gases and environmental factors. The system's core microcontroller is an Arduino UNO R3
board, which is linked to the cloud by a number of sensors. For intelligent prediction, AI and ML are employed. Using hybrid
hidden Markov and AI models, the system outperforms current methods in mistake detection. The hybrid ANN and HMM
defect detection techniques have a FPR of 0.01% [11].

Kumar et al. (2022) Describe a low-cost multi-sensor DAQ system that can detect defects in 3D printed products. The
apparatus collects Real-time multi-sensor data is acquired from sound, vibration, and current sensors using an Arduino
microcontroller. The authors use the CNN model and the chi-square approach to examine how fault circumstances affect the

recorded sensor data. The CNN model showed the potential of FDM-based 3D printing in Industry 4.0 by classifying 94%
accuracy in both normal and fault state data [12].

Hojabri et al. (2022) assesses how well ML models perform in detecting faults in PV modules. They discuss eight
different faults and their impacts on output, using literature review and simulation. The results show indicates for seven
chosen classes, NN achieves 93% classification accuracy, highlighting the promise of inexpensive sensors and ML models for
enhanced defect detection [13].

Dang et al. (2021) uses spatial-temporal correlation to identify anomalous sensory information. They create an MSC
technique that improves the accuracy and FPR of online detection. Furthermore, for both temporary and permanent artificial
abnormalities, they develop a general anomaly model. In comparison to current systems, MSC delivers a 5% lower FPR and an
8% higher ACC [14].

Marathe et al. (2021) introduces Current Sense is a fingerprint for sensors that records the electrical properties of

hardware parts. Without context, this fingerprint assesses the health of the sensors, corrects for drift, and identifies
catastrophic flaws. Numerous environmental sensors may be used using this non-intrusive method. Current Sense surpasses

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

140

conventional anomaly detectors and accounts for sensor drift problems by 86%, according to the study, which uses 51 sensors
spread across many cities [15].

Viktoros, Michael and Polycarpou (2020) explores the development of a small fault dictionary for IoT-enabled CPS that
uses Multiple sensor failure isolation and detection using a real-time model. Because of its tremendous scalability, the method
requires less memory and enables fault isolation in linear time. Because ZDD are used in the study as a fault dictionary, the
examined systems' fault isolation procedure takes 0.002 to 0.012 seconds [16].

Table I presents a comparative summary of prior studies on Industrial IoT networks using ML, focusing on techniques,
performance, limitations, and future research directions.

Table 1 : Summary of Reviewed Works Industrial IOT Networks Based Machine Learning Techniques

 Author Methodology Data Key Findings Limitation Future Work

Praveenchandar
et al. (2022)

Hybrid HMM + ANN for fault
detection; Arduino-based

real-time monitoring system
using multiple gas sensors

Real-time toxic gas
sensor data (NO2,

CO, SO2, etc.),
Arduino + ESP8266

IoT system

Achieved 0.01%
false positive rate

in sensor fault
detection; real-
time toxic gas

monitoring

Limited
scalability,
specific to
toxic gas

environments

Extend to
scalable multi-
environment
IIoT networks
with advanced

AI models

Kumar et al.
(2022)

CNN model trained with chi-
square feature selection; K-
means clustering; Arduino-

based DAQ

Multi-sensor
(vibration, sound,
current) data from
FDM 3D printing

94%
classification

accuracy for fault
diagnosis in 3D

printing

Focused on
offline data
analysis and

printing-
specific faults

Integrate real-
time ML for

broader
industrial
machinery
diagnostics

Hojabri et al.
(2022)

ML classification (including
NN) on labelled panel-level

electrical data

Real and simulated
PV module data

with 8 fault types

93% accuracy in
PV fault

classification
using low-cost

sensors

Model
complexity

may limit
deployment
in resource-
constrained
hardware

Develop
lightweight

models
optimized for

embedded IIoT
devices

Dang et al.
(2021)

Monotone Subtrend
Correlation (MSC); SPE
control limit estimation

The dataset from
the Intel Berkeley

Research Lab (IBRL)

8% higher
accuracy, 5%
lower FPR;

detects short and
long-term

anomalies in real
time with

minimal data

Needs
artificial
anomaly

generation
for

evaluation;
specific

tuning for
different

environments

Extend MSC
for multi-

source sensor
fusion and

Python-

embedded IIoT
deployments

Marathe et al.
(2021)

Sensor fingerprinting based
on electrical characteristics

(Current Sense)

51 air pollution
sensors in real-

world over 8
months

98% F1 score for
fault detection;

86% drift
compensation

Requires
access to
sensor

internals;
limited to

pollution
monitoring

Generalize
Current Sense

for
heterogeneous

industrial

sensors

Viktoros,
Michael and
Polycarpou

(2020)

Model-based multiple sensor
fault detection using ZDD

(Boolean encoding)

Simulated fault data
for CPS/IoT

environments

Fault isolation
within 0.002s–
0.012s; reduced

memory
overheads

Still
theoretical;

lacks
implementati

on in real
IIoT networks

Combine ZDD
with live ML-

based anomaly
prediction in
Python-based

platforms

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

141

A. Research gaps/ problems
Existing literature on AI-powered optimization in Industrial IoT (IIoT) systems highlights diverse innovations in

sensor-based fault detection using machine learning. Several studies have developed real-time monitoring systems leveraging
Arduino-based multi-sensor data acquisition units that collect environmental, acoustic, and electrical signals. These setups
often employ hybrid AI models such as ANN-HMM, CNNs, and spatial-temporal correlation techniques to improve the
accuracy of anomaly detection and minimize false positive rates. Techniques like Current Sense use electrical fingerprinting

for non-intrusive fault diagnosis and sensor drift correction, demonstrating high robustness across distributed environments.
According to existing work, numerous challenges persist in the optimization of Industrial IoT (IIoT) networks, particularly
related to data quality, preprocessing inconsistency, class imbalance, insufficient use of advanced deep learning models, and
limited performance evaluation frameworks. Prior studies often lack standardized pipelines for noise reduction, missing value
handling, and feature engineering, while many overlook the severe impact of class imbalance on fault detection. Additionally,
the use of shallow or non-sequential models fails to capture the temporal dependencies inherent in IIoT time-series data. To
overcome the limitations of prior studies, the proposed work introduces a scalable AI-driven approach using Research Lab
Sensor Data. It includes thorough preprocessing—data cleaning, SMOTE for class balancing, time-based feature extraction, and
Min-Max scaling. An LSTM model is trained to capture temporal patterns for fault detection. Performance is evaluated using
precision, recall, F1-score, and accuracy, ensuring robust and balanced results. This streamlined pipeline addresses key gaps in
data handling, model training, and performance evaluation for IIoT network optimization.

III. METHODOLOGY
The methodology for optimizing IIoT networks is outlined in the provided in The process starts with gathering

information from the Intel Berkeley Research Lab, after which it goes through many preparatory steps. Preprocessing steps
included data cleaning (removing duplicates, handling missing values), class balancing using SMOTE to address imbalance
between “Normal” and “Faulty” classes, and feature engineering involving time-based features and rolling statistics. Feature
scaling was applied using Min-Max normalization to ensure consistent ranges across variables. The dataset was partitioned
20% are testing sets and 80% are training sets to facilitate predictive modelling. The training data is used to build models,
specifically leveraging LSTM networks are ideal for IIoT systems' problem detection and time-series prediction. The model's
performance is assessed using industry-standard criteria including F1-score, recall, accuracy, and precision. This
comprehensive pipeline ensures effective fault detection and optimization of IIoT networks through AI-driven predictive
analytics.

A. Data Collection
The Intel Berkeley Research Lab's 54 sensors are used to gather the data. Mica2Dot sensors equipped with

weatherboards recorded temperature, light, voltage, humidity, and time-stamped topological data every 31 seconds. Built on
the TinyOS platform, The TinyDB in-network query processing technology was used to acquire the data. Figure 2 depicts the
compacted shape of the sensors.

Figure 1 : Scatter Plot for Compressed Data

Figure 1 visualizes the distribution of four different types of sensor readings Compressed Temperature, Compressed
Humidity, Compressed Light, and Compressed Voltage against a "Compressed Sample Index." Each data point represents a
sampled sensor reading, with different colors distinguishing the sensor types. The y-axis, "Compressed Values," ranges from
0.0 to 1.0, indicating that the sensor data has likely been normalized or scaled. The x-axis, "Compressed Sample Index," spans
from 0 to approximately 2.0 x 106, suggesting a large dataset of sampled and compressed sensor readings over time or a
sequence of measurements. The scattered plot shows variability and patterns in each sensor’s compressed values, helping to
visually assess their behavior and trends.

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

142

Figure 2: Correlation Matrix of Features

Figure 2 is a correlation matrix that uses color intensity and numerical values to depict the strength and direction of
these correlations, falling between -1 and +1. There's a significant inverse relationship between temperature and humidity (-
0.73), while voltage and humidity have a moderate positive correlation (0.53). Light exhibits weak linear relationships with
the other measured environmental parameters.

B. Data Preprocessing
Data preparation is an essential process that converts raw sensor data into a format that machine learning models can

use, preparing it for analysis. I want to make the model more efficient and perform better by eliminating noise and making it
more consistent. Standard preprocessing procedures often involve:

C. Data Cleaning
The process of collecting and analyzing data cannot happen without data cleaning. This is because it guarantees the

accuracy and quality of data which is vital for making well thought through decision and taking action. Below are given the
key data cleaning steps:

• Remove duplicates: Data deduplication is the process of eliminating duplicate data from a dataset since sensors may
gather data more than once.

• Handle missing values: Determining and dealing with missing data using methods like removal, interpolation, or
imputation, depending on the kind and amount of the missing variables.

D. Class Balanced Using SMOTE
An imbalance in data distribution occurs when there are more instances from the majority class than the minority

class. Here, the sampling-level technique is the way to go for accurate classification by ensuring that classes are distributed
evenly [17]. A common technique for oversampling is the SMOTE. The linear interpolation technique is used between
Synthetic minority class instances are created using the original minority class instances. Balanced data distribution depicts in

below:

Figure 3 : Class Distribution After Smote

Figure 3 illustrates the balance between two classes, "Normal" and "Faulty," after the application of the SMOTE
algorithm. Each class now contains approximately 30,000 samples, indicating that by oversampling ensure that the minority
group receives an equal number of samples as the dominant group ("Normal"), SMOTE has effectively solved the problem of

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

143

class imbalance. Since properly training ML models necessitates avoiding the issue of the model's bias towards the majority
class and ensuring that instances of both classes are categorized correctly, it is imperative that data be dispersed evenly across
all classes.

E. Feature Engineering
The feature engineering stages designed to enhance predictive accuracy, followed the feature engineering process. To

first extract the local temporal patterns inherent in the sensor data, time based and rolling window features were created,

chiefly consisting of statistical measures such as rolling mean and standard deviation. Next, a feature selection method was
applied to select and eliminate the most relevant features thereby improving the model efficiency and substituting to minimize
the noise. Finally, the reformulated the time series data into a supervisory learning problem using the Keras Time Series
Generator API for efficient training of the proposed DL architectures on sequential sensor measurements.

F. Feature Scaling
Scaling techniques play a critical role in domain data preprocessing for ML, to make a predictive model more robust

and effective [18]. It ensures that each feature contributes evenly to the model and works especially well when features have
varying scales. According to the Min-Max Scaler, the converted data is normally distributed with a mean of 0 and a variable of
1. Equation (1) is used to scale the characteristics to a certain range, usually between 0 and 1:

𝑆𝑐𝑎𝑙𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =
𝐹𝑒𝑎𝑡𝑢𝑟𝑒−min (𝐹𝑒𝑎𝑡𝑢𝑟𝑒)

max(𝐹𝑒𝑎𝑡𝑢𝑟𝑒)−min (𝐹𝑒𝑎𝑡𝑢𝑟𝑒)
 (1)

Where, 𝑚𝑖𝑛 = dataset’s minimum feature value; 𝑚𝑎𝑥 = dataset’s maximum feature value.

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out
data transformation involving handling missing or damaged data and converting data into a suitable format for machine
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical
variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically
0-1.

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used
in this study Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried
out data transformation involving handling missing or damaged data and converting data into a suitable format for
machine learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while
categorical variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features
(Total Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range,
typically 0-1.

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used
in this study Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried
out data transformation involving handling missing or damaged data and converting data into a suitable format for
machine learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while

categorical variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features
(Total Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range,
typically 0-1.

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used
in this study.

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out
data transformation involving handling missing or damaged data and converting data into a suitable format for machine
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical
variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically
0-1.

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used
in this study.

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out
data transformation involving handling missing or damaged data and converting data into a suitable format for machine
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

144

variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically
0-1.

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used
in this study.

G. Data Partitioning

In order to do predictive analysis, two subsets are created from the dataset. 20% of the data from the training set is
used to develop and train the ML model, while 80% is reserved for testing purposes. and its ability to generalize within the
context of Industrial IoT network optimization.

H. Proposed Long-Short-Term Memory (LSTM)
LSTM networks employ a gating technique that selectively stores certain data in memory while discarding other data

by adjusting the weights linked to each gate [19]. The gates, which regulate the flow of information, are neural networks [20].
These consist of Equation (2-4) a forget gate that determines what data from the past should be forgotten, Equation (5-6) an
input gate that determines what data should be stored in the present memory, and Equation (7-8) an output gate.

Figure 4 : Long-Short-Term Memory Structure

The memory cell, which is represented by the top line in the LSTM diagram, is the weight = 1 feature in the LSTM cell
seen in Figure 4. LSTM makes it simple to add or delete data from the memory cell by utilizing structures known as gates.
These gates determine what data to output 34 by combining a pointwise multiplication operation with a sigmoid neural net
layer. The gates are calculated in this way:

𝑓(𝑡) = 𝜎(𝑊ℎ𝑓 [ℎ𝑡−1, 𝑥(𝑡)] + 𝑏𝑓) (2)

𝑖(𝑡) = 𝜎(𝑊ℎ𝑖 [ℎ𝑡−1, 𝑥(𝑡)] + 𝑏𝑖) (3)

𝑜(𝑡) = 𝜎(𝑊ℎ𝑜 [ℎ𝑡−1, 𝑥(𝑡)] + 𝑏𝑜) (4)

The gates employ the sigmoid activation function and to limit the values to [0, 1]. A gate value of 0 totally erases the
information, whereas a value of 1 fully keeps it. The gates are used to compute an intermediate memory that is calculated
before the current memory.

𝐶̂(𝑡) = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑐 [ℎ𝑡−1, 𝑥(𝑡)] + 𝑏𝑐)(4) (5)

𝐶(𝑡) = 𝑓(𝑡) ⊗ 𝐶(𝑡−1) + 𝑖(𝑡) ⊗ 𝐶̃(𝑡)) (6)

Where, stands for multiplication by elements. Thus, the LSTM cell's output and current state may be calculated as
follows:

ℎ(𝑡) = 𝑜(𝑡) ⊗ 𝑡𝑎𝑛ℎ(𝐶(𝑡) (7)

𝑦(𝑡) = g(𝑊𝑦ℎ𝑡 + 𝑏𝑦) (8)

The output activation function, denoted by function g, is using either linear or SoftMax for regression tasks or

classification tasks, respectively. Key hyperparameters for LSTM include the number of hidden units (neurons), which controls

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

145

the depth and learning complexity are influenced by the model's capacity and layer count. Additionally, the learning rate,
batch size, dropout rate, and sequence length (timesteps) are important hyperparameters.

I. Performance Metrics
The suggested strategy is evaluated using many performance measures to determine its efficacy. Some examples of

these metrics include recall and loss, accuracy and precision, and F-measure. The purpose of these measures is to separate
sensor data that is defective from data that is not wrong.

a) Accuracy
It is the most popular and maybe the first option for assessing how well an algorithm performs in classification

scenarios [21]. It is defined by Equation (9) as the ratio of accurately recognized data items to all observations.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (9)

b) Precision
The accuracy of an algorithm is the percentage of observations that it predicts will be positive. Equation (10) states that

the accuracy may be calculated by dividing the number of TP by the total of FP and TP:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10)

c) Recall

Recall is the percentage of observations that turn out to be positive. As per Equation (11), recall is calculated by dividing
the number of TP by the total of FN and TP:

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝑐) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11)

d) F1-score
The F1-score evaluates an algorithm's performance by taking into consideration both accuracy and recall. Equation (12)

in mathematics represents it as the accuracy and memory harmonic mean:

𝐹1 𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12)

The numbers TP, 𝑇, 𝑁, 𝐹𝑃, and 𝐹𝑁 represent the number of TP, TN, and FN samples, respectively.

e) loss
The loss function was used to quantify the discrepancy between the predicted and actual outcomes. In Equation (13),

the numbers C and S represent the number of classes and samples, respectively, provides an illustration of this calculation,
(S ∈ C) is the samples associated with each class.

𝐿𝑜𝑠𝑠 = − log 𝑝(𝑆 ∈ 𝐶) (13)

The performance metrics are applied to model’s output on the test dataset in order to assess the reliability of the model.

IV. RESULT ANALYSIS AND DISCUSSION
In this study, the effectiveness of the proposed machine learning approach for enhancing and optimizing IIoT network

resilience is examined. Their studies are carried out using PyTorch and Scikit, two Python-based ML packages. Use a 64-bit
industrial simulation environment based on Ubuntu. The simulation system used an Intel Xeon processor with 64GB of RAM
to simulate high-throughput industrial IoT scenarios. Fault prediction in IIoT networks was amazingly achieved by the LSTM
model based on Table II. It achieved an accuracy of 99.33%, indicating a high level of precision in identifying system
anomalies. The accuracy of 99.38% suggests a moderate FPR, but the recall of 99.87% shows how well the model can identify
actual issues. A 99.66% F1-score verifies a steady and well-balanced performance. These results substantiate the LSTM
model’s suitability for AI-powered optimization and fault resilience in Industrial IoT environments.

Table 2 : Experiment Results of Proposed Model for IoT Network Optimization

Performance Metrics Long Short-Term
Memory (LSTM)

Accuracy 99.33

Precision 99.38

Recall 99.87

F1-score 99.66

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

146

Figure 5: Confusion Matrix of the LSTM Model

A matrix of perplexity assessments. The performance of the LSTM model is shown in Figure 6. For two classes, it
displays the numbers of accurate and inaccurate forecasts. The matrix reveals a substantial number of TN (30052) and TP
(29685), alongside a relatively small number of FP (78) and FN (331). Color intensity, from black to light yellow-orange,
visually represents sample counts; lighter shades denote higher values, quantified by the side color bar, confirming strong
performance.

Figure 6 : Plot Accuracy Graph of the LSTM Model

An LSTM model's training and validation accuracy across 100 epochs is shown in Figure 6. The plot reveals a swift
increase in both training (blue line) and validation (red line) accuracy during the initial epochs. Both accuracies reach and
stabilize at a high level, indicating the model's effectiveness in learning and generalizing from the data used for optimizing
Industrial IoT networks.

Figure 7 : Plot Loss Curve of the LSTM Model

Figure 7 plotted the loss of a trained LSTM model over 100 epochs. In the plot, training (blue line) and validation (red
line) loss decrease rapidly in the first epochs, proving effective learning. It is found that both losses converge and plateau at a

low value, indicating that the model learned well without overfitting the specific dataset used to optimize Industrial IoT
networks. Table III: Accuracy comparison of ml Models for IIot Fault Detection

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

147

A. Comparison and Discussion
This section compares ML models for fault prediction in IIoT networks. The FuzHD++ model had an accuracy of 92%

(see Table III) and was followed by MLP at 96.6%. With 99% accuracy, the RF model improved the performance.
Furthermore, the LSTM model presented the best result with accuracy of 99.33%, showing the best performance in modeling
temporal dependencies. These results highlight the effectiveness and use of LSTM for the reliable fault detection in IIoT
environments.

Table 3 : Accuracy Comparison of Ml Models for IIOT Fault Detection

Model Accuracy

Random Forest (RF)[22] 99

Multilayer Perceptron (MLP)[23] 96.6

FuzHD++[24] 92

Long Short-Term Memory 99.33

The approach suggested works well in predicting faults early on in Industrial IoT networks, achieving an accuracy of
99.33% with an LSTM model. This approach performs better than traditional techniques because it reveals temporal features
in data and helps clean, design, normalize and deal with imbalanced classes using SMOTE. It shows good generalization
abilities and minimal overfitting which support dependable fault detection, the best network results and cut IIoT downtime.

V. CONCLUSION AND FUTURE SCOPE
A robust and secure IoT system is heavily dependent on accurate and reliable sensor data. Despite the usefulness of

resource-constrained sensors, variables such as electrical noise and ambient conditions frequently lead to inaccurate and
erroneous readings. Among the numerous areas they may impact is a higher danger to the safety of important systems. The
primary objective of this study was to use predictive methods, such as the LSTM model, to identify IIoT issues. The model
achieved more than 99% in recall, F1-score, precision, and accuracy, with an accuracy of 99.33%. Visual evaluations, such as

accuracy/loss curves and a confusion matrix, provided additional evidence of the model's efficacy by confirming its excellent
learning capability, generalisability, and low overfitting. Although these findings show promise, there are certain limitations to
the study. Sensor noise, hardware failures, and changing network conditions are examples of real-world industrial
circumstances that would have been absent from the experimental setup due to its reliance on a simulated environment.
Despite its high accuracy, the proposed LSTM-based framework has limitations such as sensitivity to hyperparameter tuning
and higher computational requirements for training on large-scale IIoT data. Additionally, the model's performance may vary
with different sensor environments or unseen fault types. Future work will focus on incorporating real-time adaptive learning,
exploring lightweight deep learning models for edge deployment, and extending the framework to multi-class fault
classification across diverse IIoT applications. Deploying AI models in real IIoT environments faces key challenges such as
limited computational resources on edge devices, the need for low-latency real-time processing, and variability in sensor data.
Ensuring data privacy, integrating with legacy industrial systems, and maintaining model performance across diverse

conditions further complicate deployment. These issues require efficient model optimization, robust system integration, and
secure data handling strategies. Future work will focus on optimizing deep learning models like LSTM for edge deployment
through model compression and quantization techniques to reduce resource usage. Additionally, implementing real-time
adaptive learning will help models adjust to evolving sensor data and fault patterns. Expanding the framework to support
multi-class fault detection, integrating with industrial protocols for seamless deployment, and incorporating federated
learning for privacy-preserving analytics are also key directions. These advancements aim to enhance scalability,
responsiveness, and security in diverse IIoT environments. The goal of future research is to use various, real-world IIoT
datasets to deploy the model in industrial settings where it may be used in real-time. Important improvements include using
adaptive learning to address concept drift, expanding to multi-class fault classification, and using edge computing to detect
faults in real-time and at scale.

VI. REFERENCES
[1] N. Patel, “Sustainable Smart Cities : Leveraging IoT and Data Analytics for Energy Efficiency and Urban Development,” J. Emerg.

Technol. Innov. Res., vol. 8, no. 3, 2021.
[2] S. Pandya, “Predictive Analytics in Smart Grids : Leveraging Machine Learning for Renewable Energy Sources,” Int. J. Curr. Eng.

Technol., vol. 11, no. 6, pp. 677–683, 2021, doi: 10.14741/ijcet/v.11.6.12.
[3] Q. Zhou, T. Zhao, X. Chen, Y. Zhong, and H. Luo, “A Fault-Tolerant Transmission Scheme in SDN-Based Industrial IoT (IIoT) over

Fiber-Wireless Networks,” Entropy, vol. 24, no. 2, 2022, doi: 10.3390/e24020157.
[4] P. Pathak, A. Shrivastava, and S. Gupta, “A survey on various security issues in delay tolerant networks,” J Adv Shell Program., vol. 2,

no. 2, pp. 12–18, 2015.

Ruchi Patel / ESP JETA 3(4), 138-148, 2023

148

[5] Z. Li, F. Fei, and G. Zhang, “Edge-to-Cloud IIoT for Condition Monitoring in Manufacturing Systems with Ubiquitous Smart Sensors,”
Sensors, vol. 22, no. 15, Aug. 2022, doi: 10.3390/s22155901.

[6] Y. Liu, Y. Yang, X. Lv, and L. Wang, “A Self-Learning Sensor Fault Detection Framework for Industry Monitoring IoT,” Math. Probl.
Eng., vol. 12, 2013, doi: 10.1155/2013/712028.

[7] C. Kan, H. Yang, and S. Kumara, “Parallel computing and network analytics for fast Industrial Internet-of-Things (IIoT) machine
information processing and condition monitoring,” J. Manuf. Syst., vol. 46, pp. 282–293, 2018.

[8] H. S. Chandu, “A Survey of Memory Controller Architectures: Design Trends and Performance Trade-offs,” Int. J. Res. Anal. Rev., vol.
9, no. 4, pp. 930–936, 2022.

[9] A. Polleri, R. Kumar, M. M. Bron, G. Chen, S. Agrawal, and R. S. Buchheim, “Identifying a Classification Hierarchy Using a Trained
Machine Learning Pipeline,” U.S. Patent Application No. 17/303,918, 2022

[10] W. Yu, T. Dillon, F. Mostafa, W. Rahayu, and Y. Liu, “A global manufacturing big data ecosystem for fault detection in predictive
maintenance,” IEEE Trans. Ind. Informatics, 2020, doi: 10.1109/TII.2019.2915846.

[11] J. Praveenchandar et al., “IoT-Based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep
Learning Techniques,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/7516328.

[12] S. Kumar et al., “A Low-Cost Multi-Sensor Data Acquisition System for Fault Detection in Fused Deposition Modelling,” Sensors, vol.
22, no. 2, 2022, doi: 10.3390/s22020517.

[13] M. Hojabri, S. Kellerhals, G. Upadhyay, and B. Bowler, “IoT-Based PV Array Fault Detection and Classification Using Embedded
Supervised Learning Methods,” Energies, vol. 15, no. 6, 2022, doi: 10.3390/en15062097.

[14] T.-B. Dang, D.-T. Le, T.-D. Nguyen, M. Kim, and H. Choo, “Monotone Split and Conquer for Anomaly Detection in IoT Sensory Data,”
IEEE Internet Things J., vol. 8, no. 20, pp. 15468–15485, 2021, doi: 10.1109/JIOT.2021.3073705.

[15] S. Marathe, A. Nambi, M. Swaminathan, and R. Sutaria, “CurrentSense: A Novel Approach for Fault and Drift Detection in
Environmental IoT Sensors,” in Proceedings of the International Conference on Internet-of-Things Design and Implementation, New
York, NY, USA: ACM, May 2021, pp. 93–105. doi: 10.1145/3450268.3453535.

[16] S. A. Viktoros, M. K. Michael, and M. M. Polycarpou, “Compact Fault Dictionaries for Efficient Sensor Fault Diagnosis in IoT-enabled
CPSs,” in 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), 2020, pp. 236–243. doi:
10.1109/SmartIoT49966.2020.00042.

[17] A. Gaddam and V. Govender, “Detecting Sensor Faults and Outliers in Industrial Internet of Things,” in International Conference on
Sensing Technology, 2022, pp. 183–200.

[18] S. U. Jan, Y.-D. Lee, J. Shin, and I. Koo, “Sensor fault classification based on support vector machine and statistical time-domain
features,” IEEE Access, vol. 5, pp. 8682–8690, 2017.

[19] R. Tarafdar and Y. Han, “Finding Majority for Integer Elements,” J. Comput. Sci. Coll., vol. 33, no. 5, pp. 187–191, 2018.
[20] L.-S. Lin, Z.-Y. Chen, Y. Wang, and L.-W. Jiang, “Improving Anomaly Detection in IoT-Based Solar Energy System Using SMOTE-PSO

and SVM Model,” in Frontiers in Artificial Intelligence and Applications, vol. 360, 2022, pp. 123–131. doi: 10.3233/FAIA220434.
[21] M. Vakili, M. Ghamsari, and M. Rezaei, “Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT

Data Classification,” 2020.
[22] M. Safaei, M. Driss, W. Boulila, E. A. Sundararajan, and M. Safaei, “Global outliers detection in wireless sensor networks: A novel

approach integrating time-series analysis, entropy, and random forest-based classification.,” Softw. - Pract. Exp., 2022, doi:
10.1002/spe.3020.

[23] M. A. P. Putra, D. S. Kim, and J. M. Lee, “DB-BiLSTM: Euclidean Distance-Based Sensor Data Prediction for IoT Applications,” Int.
Conf. ICT Converg., vol. 2021-Octob, no. December, pp. 814–817, 2021, doi: 10.1109/ICTC52510.2021.9620877.

[24] N. Berjab, H. H. Le, and H. Yokota, “Recovering Missing Data via Top-k Repeated Patterns for Fuzzy-Based Abnormal Node Detection
in Sensor Networks,” IEEE Access, vol. 10, pp. 61046–61064, 2022, doi: 10.1109/ACCESS.2022.3181742.

