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Abstract: Through sophisticated monitoring and real-time data sharing, industrial Internet of Things (IIoT) networks 
are revolutionizing smart manufacturing. With the increasing complexity of IIoT infrastructures, traditional methods 
often fail to deliver fault-resilient and scalable performance. With the goal of improving system dependability and 
operational safety, this paper presents a method to sensor system defect detection and classification based on deep 
learning (DL), for the purpose of improving IIoT network defect prediction. Using PyTorch and Scikit-Learn in a high-
throughput Python industrial simulation environment. The Long Short-Term Memory (LSTM) model had a better fault 
detection accuracy of 99.33% than the Random Forest (RF) (99%), Multilayer Perceptron (MLP) (96.6%), and 
FuzHD++ (92%). According to the confusion matrix, the model showed minimal false positives (FP) and false 
negatives (FN) with 99.38% accuracy, 99.87% recall, and 99.66% F1-score. The robustness and generalizability of the 
model were demonstrated by the loss plots and training and validation accuracy, which demonstrated strong 

convergence with minimal overfitting. This method improves operational uptime and system dependability in IIoT 
scenarios while simultaneously improving real-time issue detection. Overall, the findings illustrate the efficacy of 
LSTM-based deep learning in enhancing defect resilience and predictive maintenance in intelligent industrial networks. 

Keywords: Industrial Internet of Things (IIoT), Fault Detection, Predictive Maintenance, Sensor Networks, Network 
Optimization, Python, Machine Learning, Intel Berkeley Research Lab Sensor Data. 

I. INTRODUCTION 
 In the era of digital transformation, industries are increasingly embracing automation, connectivity, and data-driven 
intelligence to enhance efficiency, productivity, and innovation. As operational complexity and global competition continue to 
grow, traditional industrial management methods are proving inadequate [1]. To address these challenges, organizations are 
adopting advanced technologies capable of delivering smarter, more responsive systems that adapt to dynamic environments 
and enable real-time decision-making. The IIoT is a paradigm that brings physical assets, control systems and digital 

technologies together through sensor-rich networks and is a central enabler of this transformation. These IIoT networks 
provide a continuous, low-latency [2], low-bandwidth medium for data acquisition and communication across industrial 
environments, giving deep insight into system behavior and supporting predictive maintenance as well as process automation 
[3][4] and energy optimization. But modern IIoT deployments are complex and scaled and the data source is unreliable, 
response time is slow and system is not intelligent enough to be optimized. 

In order to reach the maximum potential of IIoT, there is a growing need for intelligent optimization techniques to 
manage sensor data, detect faults proactively and adapt system parameters autonomously [5]. In general, traditional rule base 
methods which rely on pre-defined thresholds and static configurations, fail to cope with dynamic industrial conditions and 
large volumes of sensor data. As a result, they tend to generate high FP or miss sublet system anomalies which sometimes 
causes inefficiencies and failures [6]. To fill this gap, AI and ML are used that provide robust resources for pattern recognition, 
anomaly detection and predictive analytics. Because AI systems can use past and present sensor data to learn to recognize 

normal and abnormal behaviour, they can improve system performance and they can make better decisions [7][8]. High 
system uptime, reliability and responsiveness for success in IIoT environments makes these capabilities particularly 
important. 

The Python programming language forms to be central to the practical implementation of these AI-driven solutions, for 
it offers a robust ecosystem of open source libraries and frameworks written specifically for data science and ML [9]. Scikit-
learn, TensorFlow, Keras, XGBoost, as well as Panda’s support end to end building of intelligent systems (data preprocessing, 
visualization, model training, deployment, etc.). Because of its simplicity, versatility and ability to integrate with other systems 
[10], Python is a good choice to build and implement AI applications in the IIoT infrastructures.  The intent of this research is 
to build on Python's development ecosystem and data driven modelling to create smart systems that enhance operational 
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resilience, reduce downtime and maximize sensor network performance. This work shows that AI is revolutionary in 
manufacturing and how useful Python is for building intelligent, scalable IIoT applications. 

A. Motivation and Contributions of the Study 
This study's motivation stems from current IIoT developments. Which tend to be increasingly massive and complex 

and play an increasingly important role in modern day industrial operations. The problem is to ensure reliability, efficiency 
and fault tolerance, as these networks grow. Traditional network management approaches frequently fail because of the 

dynamic and data-intensive nature of IIoT settings, which results in system inefficiencies, unexpected failures and operational 
downtime. AI particularly ML integration into the IIoT networks offers a transformative possibility for IIoT network 
optimization to achieve predictable faults prediction and proactive system management. This research contributes the 
following key contributions: 

• The data set that was used for this work was a real time sensor data from the Intel Berkeley Lab Research, where 
defective sensors were identified using measurements of temperature, humidity, light, and voltage. 

• A robust preprocessing pipeline that includes data cleaning, correlation analysis, SMOTE-based class balancing and 
Min Max normalization was developed.  

• Applied time-series feature engineering techniques, including rolling statistics, to extract time-related trends from the 
sensor data. 

• Proposed a neural network model with LSTM to efficiently learn temporal connections and identify problematic sensor 

behavior.  
• Visualization of training and validation loss curves demonstrating effective model convergence with minimal 

overfitting, alongside confusion matrix plots highlighting the robustness of the model in accurately detecting sensor 
states that are both healthy and malfunctioning with little FP and FN. 

• Demonstrated model effectiveness using a standard matrix that include recall, accuracy, precision, and f1-score. 

B. Structure of the Paper 
The structure of this paper is as follows: Section II reviews related work on AI-based optimization in IIoT networks. 

Model creation and data pretreatment are covered in Section III clarification of the approach. The study findings are covered in 
Section IV. Key findings and recommendations for future research to increase IIoT dependability using AI are presented in 
Section V. 

II. LITERATURE REVIEW 

This section reviews IIoT networks using ML, focusing on fault detection, predictive maintenance, and efficient 
resource management to enhance reliability and system performance. Some of the previous works are: 

Praveenchandar et al. (2022) invention focuses on Industrial accidents can be avoided by keeping an eye on and 
managing dangerous poisonous gases and environmental factors. The system's core microcontroller is an Arduino UNO R3 
board, which is linked to the cloud by a number of sensors.  For intelligent prediction, AI and ML are employed.  Using hybrid 
hidden Markov and AI models, the system outperforms current methods in mistake detection. The hybrid ANN and HMM 
defect detection techniques have a FPR of 0.01% [11]. 

Kumar et al. (2022) Describe a low-cost multi-sensor DAQ system that can detect defects in 3D printed products. The 
apparatus collects Real-time multi-sensor data is acquired from sound, vibration, and current sensors using an Arduino 
microcontroller.  The authors use the CNN model and the chi-square approach to examine how fault circumstances affect the 

recorded sensor data. The CNN model showed the potential of FDM-based 3D printing in Industry 4.0 by classifying 94% 
accuracy in both normal and fault state data [12]. 

Hojabri et al. (2022) assesses how well ML models perform in detecting faults in PV modules. They discuss eight 
different faults and their impacts on output, using literature review and simulation. The results show indicates for seven 
chosen classes, NN achieves 93% classification accuracy, highlighting the promise of inexpensive sensors and ML models for 
enhanced defect detection [13]. 

Dang et al. (2021) uses spatial-temporal correlation to identify anomalous sensory information.  They create an MSC 
technique that improves the accuracy and FPR of online detection. Furthermore, for both temporary and permanent artificial 
abnormalities, they develop a general anomaly model. In comparison to current systems, MSC delivers a 5% lower FPR and an 
8% higher ACC [14]. 

Marathe et al. (2021) introduces Current Sense is a fingerprint for sensors that records the electrical properties of 

hardware parts. Without context, this fingerprint assesses the health of the sensors, corrects for drift, and identifies 
catastrophic flaws. Numerous environmental sensors may be used using this non-intrusive method.  Current Sense surpasses 
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conventional anomaly detectors and accounts for sensor drift problems by 86%, according to the study, which uses 51 sensors 
spread across many cities [15]. 

Viktoros, Michael and Polycarpou (2020) explores the development of a small fault dictionary for IoT-enabled CPS that 
uses Multiple sensor failure isolation and detection using a real-time model. Because of its tremendous scalability, the method 
requires less memory and enables fault isolation in linear time. Because ZDD are used in the study as a fault dictionary, the 
examined systems' fault isolation procedure takes 0.002 to 0.012 seconds [16]. 

Table I presents a comparative summary of prior studies on Industrial IoT networks using ML, focusing on techniques, 
performance, limitations, and future research directions. 

Table 1 : Summary of Reviewed Works Industrial IOT Networks Based Machine Learning Techniques 

 Author Methodology Data Key Findings Limitation Future Work 

Praveenchandar 
et al. (2022) 

Hybrid HMM + ANN for fault 
detection; Arduino-based 

real-time monitoring system 
using multiple gas sensors 

Real-time toxic gas 
sensor data (NO2, 

CO, SO2, etc.), 
Arduino + ESP8266 

IoT system 

Achieved 0.01% 
false positive rate 

in sensor fault 
detection; real-
time toxic gas 

monitoring 

Limited 
scalability, 
specific to 
toxic gas 

environments 

Extend to 
scalable multi-
environment 
IIoT networks 
with advanced 

AI models 

Kumar et al. 
(2022) 

CNN model trained with chi-
square feature selection; K-
means clustering; Arduino-

based DAQ 

Multi-sensor 
(vibration, sound, 
current) data from 
FDM 3D printing 

94% 
classification 

accuracy for fault 
diagnosis in 3D 

printing 

Focused on 
offline data 
analysis and 

printing-
specific faults 

Integrate real-
time ML for 

broader 
industrial 
machinery 
diagnostics 

Hojabri et al. 
(2022) 

ML classification (including 
NN) on labelled panel-level 

electrical data 

Real and simulated 
PV module data 

with 8 fault types 

93% accuracy in 
PV fault 

classification 
using low-cost 

sensors 

Model 
complexity 

may limit 
deployment 
in resource-
constrained 
hardware 

Develop 
lightweight 

models 
optimized for 

embedded IIoT 
devices 

Dang et al. 
(2021) 

Monotone Subtrend 
Correlation (MSC); SPE 
control limit estimation 

The dataset from 
the Intel Berkeley 

Research Lab (IBRL) 

8% higher 
accuracy, 5% 
lower FPR; 

detects short and 
long-term 

anomalies in real 
time with 

minimal data 

Needs 
artificial 
anomaly 

generation 
for 

evaluation; 
specific 

tuning for 
different 

environments 

Extend MSC 
for multi-

source sensor 
fusion and 

Python-

embedded IIoT 
deployments 

Marathe et al. 
(2021) 

Sensor fingerprinting based 
on electrical characteristics 

(Current Sense) 

51 air pollution 
sensors in real-

world over 8 
months 

98% F1 score for 
fault detection; 

86% drift 
compensation 

Requires 
access to 
sensor 

internals; 
limited to 

pollution 
monitoring 

Generalize 
Current Sense 

for 
heterogeneous 

industrial 

sensors 

Viktoros, 
Michael and 
Polycarpou 

(2020) 

Model-based multiple sensor 
fault detection using ZDD 

(Boolean encoding) 

Simulated fault data 
for CPS/IoT 

environments 

Fault isolation 
within 0.002s–
0.012s; reduced 

memory 
overheads 

Still 
theoretical; 

lacks 
implementati

on in real 
IIoT networks 

Combine ZDD 
with live ML-

based anomaly 
prediction in 
Python-based 

platforms 
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A. Research gaps/ problems 
Existing literature on AI-powered optimization in Industrial IoT (IIoT) systems highlights diverse innovations in 

sensor-based fault detection using machine learning. Several studies have developed real-time monitoring systems leveraging 
Arduino-based multi-sensor data acquisition units that collect environmental, acoustic, and electrical signals. These setups 
often employ hybrid AI models such as ANN-HMM, CNNs, and spatial-temporal correlation techniques to improve the 
accuracy of anomaly detection and minimize false positive rates. Techniques like Current Sense use electrical fingerprinting 

for non-intrusive fault diagnosis and sensor drift correction, demonstrating high robustness across distributed environments. 
According to existing work, numerous challenges persist in the optimization of Industrial IoT (IIoT) networks, particularly 
related to data quality, preprocessing inconsistency, class imbalance, insufficient use of advanced deep learning models, and 
limited performance evaluation frameworks. Prior studies often lack standardized pipelines for noise reduction, missing value 
handling, and feature engineering, while many overlook the severe impact of class imbalance on fault detection. Additionally, 
the use of shallow or non-sequential models fails to capture the temporal dependencies inherent in IIoT time-series data. To 
overcome the limitations of prior studies, the proposed work introduces a scalable AI-driven approach using Research Lab 
Sensor Data. It includes thorough preprocessing—data cleaning, SMOTE for class balancing, time-based feature extraction, and 
Min-Max scaling. An LSTM model is trained to capture temporal patterns for fault detection. Performance is evaluated using 
precision, recall, F1-score, and accuracy, ensuring robust and balanced results. This streamlined pipeline addresses key gaps in 
data handling, model training, and performance evaluation for IIoT network optimization. 

III. METHODOLOGY 
The methodology for optimizing IIoT networks is outlined in the provided in The process starts with gathering 

information from the Intel Berkeley Research Lab, after which it goes through many preparatory steps. Preprocessing steps 
included data cleaning (removing duplicates, handling missing values), class balancing using SMOTE to address imbalance 
between “Normal” and “Faulty” classes, and feature engineering involving time-based features and rolling statistics. Feature 
scaling was applied using Min-Max normalization to ensure consistent ranges across variables. The dataset was partitioned 
20% are testing sets and 80% are training sets to facilitate predictive modelling. The training data is used to build models, 
specifically leveraging LSTM networks are ideal for IIoT systems' problem detection and time-series prediction. The model's 
performance is assessed using industry-standard criteria including F1-score, recall, accuracy, and precision. This 
comprehensive pipeline ensures effective fault detection and optimization of IIoT networks through AI-driven predictive 
analytics. 

A. Data Collection 
The Intel Berkeley Research Lab's 54 sensors are used to gather the data.  Mica2Dot sensors equipped with 

weatherboards recorded temperature, light, voltage, humidity, and time-stamped topological data every 31 seconds.  Built on 
the TinyOS platform, The TinyDB in-network query processing technology was used to acquire the data. Figure 2 depicts the 
compacted shape of the sensors. 

 
Figure 1 : Scatter Plot for Compressed Data 

Figure 1 visualizes the distribution of four different types of sensor readings Compressed Temperature, Compressed 
Humidity, Compressed Light, and Compressed Voltage against a "Compressed Sample Index." Each data point represents a 
sampled sensor reading, with different colors distinguishing the sensor types. The y-axis, "Compressed Values," ranges from 
0.0 to 1.0, indicating that the sensor data has likely been normalized or scaled. The x-axis, "Compressed Sample Index," spans 
from 0 to approximately 2.0 x 106, suggesting a large dataset of sampled and compressed sensor readings over time or a 
sequence of measurements. The scattered plot shows variability and patterns in each sensor’s compressed values, helping to 
visually assess their behavior and trends. 
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Figure 2: Correlation Matrix of Features 

Figure 2 is a correlation matrix that uses color intensity and numerical values to depict the strength and direction of 
these correlations, falling between -1 and +1. There's a significant inverse relationship between temperature and humidity (-
0.73), while voltage and humidity have a moderate positive correlation (0.53). Light exhibits weak linear relationships with 
the other measured environmental parameters. 

B. Data Preprocessing 
Data preparation is an essential process that converts raw sensor data into a format that machine learning models can 

use, preparing it for analysis. I want to make the model more efficient and perform better by eliminating noise and making it 
more consistent.  Standard preprocessing procedures often involve: 

C. Data Cleaning 
The process of collecting and analyzing data cannot happen without data cleaning. This is because it guarantees the 

accuracy and quality of data which is vital for making well thought through decision and taking action. Below are given the 
key data cleaning steps: 

• Remove duplicates: Data deduplication is the process of eliminating duplicate data from a dataset since sensors may 
gather data more than once. 

• Handle missing values: Determining and dealing with missing data using methods like removal, interpolation, or 
imputation, depending on the kind and amount of the missing variables. 

D. Class Balanced Using SMOTE 
An imbalance in data distribution occurs when there are more instances from the majority class than the minority 

class. Here, the sampling-level technique is the way to go for accurate classification by ensuring that classes are distributed 
evenly [17]. A common technique for oversampling is the SMOTE. The linear interpolation technique is used between 
Synthetic minority class instances are created using the original minority class instances.  Balanced data distribution depicts in 

below: 

 
Figure 3 : Class Distribution After Smote 

Figure 3 illustrates the balance between two classes, "Normal" and "Faulty," after the application of the SMOTE 
algorithm. Each class now contains approximately 30,000 samples, indicating that by oversampling ensure that the minority 
group receives an equal number of samples as the dominant group ("Normal"), SMOTE has effectively solved the problem of 
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class imbalance.  Since properly training ML models necessitates avoiding the issue of the model's bias towards the majority 
class and ensuring that instances of both classes are categorized correctly, it is imperative that data be dispersed evenly across 
all classes. 

E. Feature Engineering 
The feature engineering stages designed to enhance predictive accuracy, followed the feature engineering process. To 

first extract the local temporal patterns inherent in the sensor data, time based and rolling window features were created, 

chiefly consisting of statistical measures such as rolling mean and standard deviation. Next, a feature selection method was 
applied to select and eliminate the most relevant features thereby improving the model efficiency and substituting to minimize 
the noise. Finally, the reformulated the time series data into a supervisory learning problem using the Keras Time Series 
Generator API for efficient training of the proposed DL architectures on sequential sensor measurements. 

F. Feature Scaling 
Scaling techniques play a critical role in domain data preprocessing for ML, to make a predictive model more robust 

and effective [18]. It ensures that each feature contributes evenly to the model and works especially well when features have 
varying scales. According to the Min-Max Scaler, the converted data is normally distributed with a mean of 0 and a variable of 
1. Equation (1) is used to scale the characteristics to a certain range, usually between 0 and 1: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =
𝐹𝑒𝑎𝑡𝑢𝑟𝑒−min (𝐹𝑒𝑎𝑡𝑢𝑟𝑒)

max(𝐹𝑒𝑎𝑡𝑢𝑟𝑒)−min (𝐹𝑒𝑎𝑡𝑢𝑟𝑒)
 (1) 

Where, 𝑚𝑖𝑛 = dataset’s minimum feature value; 𝑚𝑎𝑥 = dataset’s maximum feature value. 

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out 
data transformation involving handling missing or damaged data and converting data into a suitable format for machine 
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical 
variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total 
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically 
0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used 
in this study Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried 
out data transformation involving handling missing or damaged data and converting data into a suitable format for 
machine learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while 
categorical variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features 
(Total Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, 
typically 0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used 
in this study Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried 
out data transformation involving handling missing or damaged data and converting data into a suitable format for 
machine learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while 

categorical variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features 
(Total Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, 
typically 0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used 
in this study.  

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out 
data transformation involving handling missing or damaged data and converting data into a suitable format for machine 
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical 
variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total 
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically 
0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used 
in this study.  

Data preprocessing plays a critical role in data analysis and machine learning projects. In this study, we carried out 
data transformation involving handling missing or damaged data and converting data into a suitable format for machine 
learning algorithms. Missing values were carefully imputed to avoid bias and maintain prediction accuracy, while categorical 
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variables were label-encoded to convert them into numerical values. Additionally, continuous numerical features (Total 
Charges, Monthly Charges, Tenure Months) were normalized using Min-Max Scaler to fit within a predefined range, typically 
0-1.  

These preprocessing steps ensure that the data is appropriately prepared for the machine learning algorithms used 
in this study. 

G. Data Partitioning 

In order to do predictive analysis, two subsets are created from the dataset.   20% of the data from the training set is 
used to develop and train the ML model, while 80% is reserved for testing purposes. and its ability to generalize within the 
context of Industrial IoT network optimization. 

H. Proposed Long-Short-Term Memory (LSTM) 
LSTM networks employ a gating technique that selectively stores certain data in memory while discarding other data 

by adjusting the weights linked to each gate [19]. The gates, which regulate the flow of information, are neural networks [20]. 
These consist of Equation (2-4) a forget gate that determines what data from the past should be forgotten, Equation (5-6) an 
input gate that determines what data should be stored in the present memory, and Equation (7-8) an output gate. 

 

Figure 4 : Long-Short-Term Memory Structure 

The memory cell, which is represented by the top line in the LSTM diagram, is the weight = 1 feature in the LSTM cell 
seen in Figure 4. LSTM makes it simple to add or delete data from the memory cell by utilizing structures known as gates. 
These gates determine what data to output 34 by combining a pointwise multiplication operation with a sigmoid neural net 
layer. The gates are calculated in this way: 

𝑓(𝑡)  =  𝜎(𝑊ℎ𝑓 [ℎ𝑡−1, 𝑥(𝑡)] +  𝑏𝑓 ) (2) 

𝑖(𝑡)  =  𝜎(𝑊ℎ𝑖  [ℎ𝑡−1, 𝑥(𝑡)] +  𝑏𝑖 ) (3) 

𝑜(𝑡)  =  𝜎(𝑊ℎ𝑜  [ℎ𝑡−1, 𝑥(𝑡)] +  𝑏𝑜 ) (4) 

The gates employ the sigmoid activation function and to limit the values to [0, 1]. A gate value of 0 totally erases the 
information, whereas a value of 1 fully keeps it. The gates are used to compute an intermediate memory that is calculated 
before the current memory. 

𝐶̂(𝑡) =  𝑡𝑎𝑛ℎ(𝑊ℎ𝑐  [ℎ𝑡−1, 𝑥(𝑡)] +  𝑏𝑐)(4) (5) 

𝐶(𝑡)  =  𝑓(𝑡) ⊗ 𝐶(𝑡−1) + 𝑖(𝑡) ⊗ 𝐶̃(𝑡)) (6) 

Where, stands for multiplication by elements.  Thus, the LSTM cell's output and current state may be calculated as 
follows: 

ℎ(𝑡)  =  𝑜(𝑡) ⊗  𝑡𝑎𝑛ℎ(𝐶(𝑡) (7) 

𝑦(𝑡)  =  g(𝑊𝑦ℎ𝑡  +  𝑏𝑦 ) (8) 

The output activation function, denoted by function g, is using either linear or SoftMax for regression tasks or 

classification tasks, respectively. Key hyperparameters for LSTM include the number of hidden units (neurons), which controls 
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the depth and learning complexity are influenced by the model's capacity and layer count. Additionally, the learning rate, 
batch size, dropout rate, and sequence length (timesteps) are important hyperparameters. 

I. Performance Metrics 
The suggested strategy is evaluated using many performance measures to determine its efficacy. Some examples of 

these metrics include recall and loss, accuracy and precision, and F-measure.  The purpose of these measures is to separate 
sensor data that is defective from data that is not wrong.  

a) Accuracy 
It is the most popular and maybe the first option for assessing how well an algorithm performs in classification 

scenarios [21]. It is defined by Equation (9) as the ratio of accurately recognized data items to all observations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (9) 

b) Precision  
The accuracy of an algorithm is the percentage of observations that it predicts will be positive. Equation (10) states that 

the accuracy may be calculated by dividing the number of TP by the total of FP and TP: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

c) Recall  

Recall is the percentage of observations that turn out to be positive. As per Equation (11), recall is calculated by dividing 
the number of TP by the total of FN and TP: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝑐) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

d) F1-score  
The F1-score evaluates an algorithm's performance by taking into consideration both accuracy and recall. Equation (12) 

in mathematics represents it as the accuracy and memory harmonic mean:  

𝐹1 𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

The numbers TP, 𝑇, 𝑁, 𝐹𝑃, and 𝐹𝑁 represent the number of TP, TN, and FN samples, respectively. 

e) loss  
The loss function was used to quantify the discrepancy between the predicted and actual outcomes. In Equation (13), 

the numbers C and S represent the number of classes and samples, respectively, provides an illustration of this calculation, 
(S ∈ C) is the samples associated with each class. 

𝐿𝑜𝑠𝑠 = − log 𝑝(𝑆 ∈ 𝐶) (13) 

The performance metrics are applied to model’s output on the test dataset in order to assess the reliability of the model. 

IV. RESULT ANALYSIS AND DISCUSSION 
In this study, the effectiveness of the proposed machine learning approach for enhancing and optimizing IIoT network 

resilience is examined. Their studies are carried out using PyTorch and Scikit, two Python-based ML packages. Use a 64-bit 
industrial simulation environment based on Ubuntu. The simulation system used an Intel Xeon processor with 64GB of RAM 
to simulate high-throughput industrial IoT scenarios. Fault prediction in IIoT networks was amazingly achieved by the LSTM 
model based on Table II. It achieved an accuracy of 99.33%, indicating a high level of precision in identifying system 
anomalies. The accuracy of 99.38% suggests a moderate FPR, but the recall of 99.87% shows how well the model can identify 
actual issues. A 99.66% F1-score verifies a steady and well-balanced performance. These results substantiate the LSTM 
model’s suitability for AI-powered optimization and fault resilience in Industrial IoT environments. 

Table 2 : Experiment Results of Proposed Model for IoT Network Optimization 

Performance Metrics Long Short-Term 
Memory (LSTM) 

Accuracy 99.33 

Precision 99.38 

Recall 99.87 

F1-score 99.66 
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Figure 5: Confusion Matrix of the LSTM Model 

A matrix of perplexity assessments. The performance of the LSTM model is shown in Figure 6. For two classes, it 
displays the numbers of accurate and inaccurate forecasts. The matrix reveals a substantial number of TN (30052) and TP 
(29685), alongside a relatively small number of FP (78) and FN (331). Color intensity, from black to light yellow-orange, 
visually represents sample counts; lighter shades denote higher values, quantified by the side color bar, confirming strong 
performance. 

 
Figure 6 : Plot Accuracy Graph of the LSTM Model 

An LSTM model's training and validation accuracy across 100 epochs is shown in Figure 6. The plot reveals a swift 
increase in both training (blue line) and validation (red line) accuracy during the initial epochs. Both accuracies reach and 
stabilize at a high level, indicating the model's effectiveness in learning and generalizing from the data used for optimizing 
Industrial IoT networks. 

 
Figure 7 : Plot Loss Curve of the LSTM Model 

Figure 7 plotted the loss of a trained LSTM model over 100 epochs. In the plot, training (blue line) and validation (red 
line) loss decrease rapidly in the first epochs, proving effective learning. It is found that both losses converge and plateau at a 

low value, indicating that the model learned well without overfitting the specific dataset used to optimize Industrial IoT 
networks.   Table III: Accuracy comparison of ml Models for IIot Fault Detection  
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A. Comparison and Discussion 
This section compares ML models for fault prediction in IIoT networks. The FuzHD++ model had an accuracy of 92% 

(see Table III) and was followed by MLP at 96.6%. With 99% accuracy, the RF model improved the performance. 
Furthermore, the LSTM model presented the best result with accuracy of 99.33%, showing the best performance in modeling 
temporal dependencies. These results highlight the effectiveness and use of LSTM for the reliable fault detection in IIoT 
environments. 

Table 3 : Accuracy Comparison of Ml Models for IIOT Fault Detection 

Model Accuracy 

Random Forest (RF)[22] 99 

Multilayer Perceptron (MLP)[23] 96.6 

FuzHD++[24] 92 

Long Short-Term Memory 99.33 

The approach suggested works well in predicting faults early on in Industrial IoT networks, achieving an accuracy of 
99.33% with an LSTM model. This approach performs better than traditional techniques because it reveals temporal features 
in data and helps clean, design, normalize and deal with imbalanced classes using SMOTE. It shows good generalization 
abilities and minimal overfitting which support dependable fault detection, the best network results and cut IIoT downtime. 

V. CONCLUSION AND FUTURE SCOPE 
A robust and secure IoT system is heavily dependent on accurate and reliable sensor data.  Despite the usefulness of 

resource-constrained sensors, variables such as electrical noise and ambient conditions frequently lead to inaccurate and 
erroneous readings.  Among the numerous areas they may impact is a higher danger to the safety of important systems. The 
primary objective of this study was to use predictive methods, such as the LSTM model, to identify IIoT issues. The model 
achieved more than 99% in recall, F1-score, precision, and accuracy, with an accuracy of 99.33%. Visual evaluations, such as 

accuracy/loss curves and a confusion matrix, provided additional evidence of the model's efficacy by confirming its excellent 
learning capability, generalisability, and low overfitting. Although these findings show promise, there are certain limitations to 
the study. Sensor noise, hardware failures, and changing network conditions are examples of real-world industrial 
circumstances that would have been absent from the experimental setup due to its reliance on a simulated environment. 
Despite its high accuracy, the proposed LSTM-based framework has limitations such as sensitivity to hyperparameter tuning 
and higher computational requirements for training on large-scale IIoT data. Additionally, the model's performance may vary 
with different sensor environments or unseen fault types. Future work will focus on incorporating real-time adaptive learning, 
exploring lightweight deep learning models for edge deployment, and extending the framework to multi-class fault 
classification across diverse IIoT applications. Deploying AI models in real IIoT environments faces key challenges such as 
limited computational resources on edge devices, the need for low-latency real-time processing, and variability in sensor data. 
Ensuring data privacy, integrating with legacy industrial systems, and maintaining model performance across diverse 

conditions further complicate deployment. These issues require efficient model optimization, robust system integration, and 
secure data handling strategies. Future work will focus on optimizing deep learning models like LSTM for edge deployment 
through model compression and quantization techniques to reduce resource usage. Additionally, implementing real-time 
adaptive learning will help models adjust to evolving sensor data and fault patterns. Expanding the framework to support 
multi-class fault detection, integrating with industrial protocols for seamless deployment, and incorporating federated 
learning for privacy-preserving analytics are also key directions. These advancements aim to enhance scalability, 
responsiveness, and security in diverse IIoT environments. The goal of future research is to use various, real-world IIoT 
datasets to deploy the model in industrial settings where it may be used in real-time. Important improvements include using 
adaptive learning to address concept drift, expanding to multi-class fault classification, and using edge computing to detect 
faults in real-time and at scale. 
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