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Abstract: As the number of people around the world purchasing electric vehicles (EVs) continues to rise, there is a growing 

need for more effective means of making batteries safer, and not just with regard to fire safety. Lithium-ion batteries, 

which are the power source for electric cars, are high energy density devices, but they respond negatively to temperature 

changes. Some things that can cause heat to accumulate: overcharging, internal short circuits and high temperatures 

outside. That may cause a scary phenomenon known as thermal runaway. This work introduces the Smart Thermal 

Monitoring System (STMS) that can detect, locate and predict the thermal issues in the EV battery packs before they 

become a safety problem. The STMS is based on several bleeding edge technologies, including thermal sensors capable of 

integration with IoT (Internet of Things), edge computing, cloud analytics, and predictive algorithms driven by machine 

learning. Temperature data in the real time is transmitted from the sensors disposed in each of the battery modules to one 

central mare processing device through the communication protocol of MQTT. Then a Long Short-Term Memory (LSTM) 

neural network studies the data to guess how the temperature will change in the future, looking for signs of overheating at 

the very start. The system, which is also connected to the cloud, relays these alerts to the vehicle’s control unit and its 

driver through a cloud-connected dashboard, as soons as it senses a thermal event might occur. To see how well the system 

worked, we charged and discharged a 4-unit lithium-ion battery back over the span of 60 days in a controlled manner. The 

LSTM model could forecast the temperature with a mean absolute error (MAE) of approximately 0.27°C, which roughly 

corresponds to an accuracy of over 94%. The STMS outperformed conventional passive thermal systems by reducing the 

number of thermal incidents by 70 percent and offering people around six minutes to act before critical thresholds were 

met. 

The findings in this study represent a meaningful advancement with respect to safety of electric vehicles because it 

demonstrates a clever and full proof method to monitor battery temperature. What’s different about the STMS as opposed 

to older systems is that it is able to predict temperature changes before they happen. This enables action to be taken 

immediately to preserve battery health, reduce maintenance costs and, most important, prevent accidents that can be fatal. 

With increasing adoption of electric vehicles, intelligent systems need to be integrated into the battery management unit 

(BMU) to ensure customer and operation safety. 

Keywords: Thermal Confidence in your EVs SafetyIEEE2motor.comBILL OF MATERIALSIDEAL PARTSU sageSmart 

Thermal Monitoring System (STMS), IoT Sensors, Predictive Analytics, Machine Learning, LSTM Neural Network, Battery 

Management System (BMS), Cloud Computing, Real-time Monitoring, EV Battery Health, Edge Computing, MQTT 

Protocol, Thermal Anomaly DetectionINTRODUCTIONThe final connection to the overall connectivity of making sure EVs 

are safe. 

I. INTRODUCTION 

A. Background and Why We’re Doing This 

As well as an increased concern for the environment, and more efforts by the car industry to be greener, electric vehicles 

(EVs) have transformed the way we travel. The performance and reliability of an electric car depend most on the lithium-ion 

battery. It powers the car, it’s full of energy, and it can go far. Lithium-ion batteries have these attributes, but they are extremely 

sensitive to variations in temperature, and they can be hazardous when used outside their preferred thermal range. The potential 

for heat-dri-ven overreaction, other thermal runaway and then fire or explosion remains one of the most significant safety 

problems in electric vehicle technology. Such a runaway heating process, which is a kind of self-feeding reaction that increases 

the heat, can turn from a minor issue to a major threat in no time if it’s not nipped in the bud. And with more and more people 

transitioning to electric vehicles, it is no longer a matter of good to have, but need to have, systems in place to prevent batteries 

from overheating. 
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B. Issues with Current Thermal Management 

Cooler temperatures for most electric vehicles (EVs) are maintained by passive cooling systems or alerts sound if the 

batteries start to get too hot. These outdated systems excel at stable-temperature maintenance, but do not lend themselves to the 

rapid detection of rapidly changing thermal anomalies. They’re typically not smart enough to predict what’s going to happen 

before a thermal event, so they react rather than act. These systems also can’t tell you in real time how well each battery cell is 

operating thermally; they typically can only monitor metrics at the module or pack level. As a result, localized cell overheating 

can re-main undetected until it becomes more severe. We require intelligent, distributed monitoring systems that can do more 

than simply find a temperature change; they must predict it. 

C. The Growing Significance of Smart Monitoring 

In the age of the Internet of Things (IoT) and artificial intelligence (AI), smart thermal monitoring systems give us a way 

to redefine the safety of the batteries. These systems apply cloud-based analytics, edge computing, wireless networking and 

distributed thermal sensing to continuously monitor every battery cell's temperature. Predictive algorithms like the machine 

learning models known as Long Short-Term Memory (LSTM) networks — which learn by looking at the past data — can detect 

odd thermal patterns. Smart systems can take action, moving beyond the simple act of watching to the ability to make smart 

predictions. They can signal in advance, activate fail-safes and even turn off high-risk sections before they break. Not only does 

this keep passengers safe, but it also helps the battery last longer and reduces the cost of repairs. 

D. Research Goals 

Smart Thermal Monitoring System (STMS) in EV batteries The objective in allocating this research: Develop Smart 

Thermal monitoring system that save the batteries in EV. “The solution resists all thermal considerations with the help of IoT 

temperature sensing in real-time, AI-powered anomaly prediction, and cloud-based visualization tools. Some of the main goals 

are: 

 It becomes a lot easier to identify thermal problems early 

 Thermal runaway risk mitigation 

 Helping batteries live longer and work better over time 

 Data-driven predictions about maintenance.Handled data to predict maintenance. 

E. Why the Study Is Important 

This study contributes to what we know about EV safety engineering by proposing a robust, scalable means of monitoring 

battery temperature. The STMS is unique among frameworks in that it leverages intelligent data analytics to spotlight taking 

action before damage occurs. The fallout isn’t limited to carmakers, safety regulators and people who own the cars. They also 

contribute to the larger goal of creating electric cars that are safer, smarter and less of a burden on the environment. 

II. LITERATURE REVIEW 

A. Battery Safety and Thermal Runaway 

Lithium-ion batteries are especially popular, but they can become too hot if they are overcharged, discharged too deeply 

or damaged in any way. Feng et al. (2018) and others have described the sequence of events that leads to thermal runaway—

internal short circuits and overheating can initiate chemical reactions that produce heat, these reactions can then produce more 

heat, and so on. Those reactions make the interior even hotter, in a feedback loop that could ignite a fire or explosion. There have 

been many complaints about thermal issues in the race for electric vehicles (EVs), that’s why they put in place thermal 

management systems. But most systems deal only with the symptoms of thermal instability, not the real issues. It’s increasingly 

evident that the answer is a sensor-based, predictive approach. 

B. Old-Fashioned Ways to Control Heat 

Examples of conventional thermal management systems include air cooling systems, liquid cooling systems and those 

which utilize phase change materials. These systems do partially work, but they are passive or reactive. In the end, when there is 

a high current load, or it’s hot outside, cooling air doesn’t do that well, as explained by Rao and Wang (2011). Liquid cooling, by 

contrast, is more effective but more expensive and adds complexity to the design of the car. And traditional systems generally 

don’t detect small fluctuations in temperature within each cell. They average these temperatures across modules, a process that 
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can obscure early warnings signs of localized heating. As a result, such systems cannot prevent heat events again from occurring 

before they reach a dangerous level, they only respond to the event. 

 

C. Smart Monitoring and IoT Linking up 

Dr. Stork said that in industry, the use of IoT technologies for monitoring is gaining ground, “because they allow sensors 

to talk to each other, and convey information in real time. Smart thermal sensors can always monitor temperature for each cell 

in different locations. Gao et al. (2020) demonstrated that IoT sensor network technology can help locate problems and make 

systems more reliable in industrial equipment. Such systems allow you to visualize thermal states inside the battery pack better 

when they are applied in electric vehicles (EVs). With today’s low power micro controllers, and wireless communication 

protocols like MQTT, it’s very easy and fast to send the current temperature readings to the Cloud for further analysis. 

D. Predictive Analytics and Machine Learning 

Layering machine learning onto safety systems has aided in identifying problems and predictive maintenance. Neural 

networks, including LSTM networks, are capable of learning complex patterns in time series data. Zhang et al. (2022) applied 

deep learning to detect battery failure at an early learning phase. In thermal monitoring, machine learning might examine the 

shape, length and frequency of past heating events to detect signs of dangerous temperature spikes. That allows the system to 

broadcast warnings well before a limit is breached, and provides people time to act before it arrives. 

E. What needs more research, what can be done 

There's been a lot of research done on various pieces of things like thermal management, how to design cooling systems 

or use machine learning to make predictions. But few have developed a complete system that encompasses sensing, 

communication, analytics and visualization. A vast majority of the models out there are only tested in simulations or in the lab, 

they’ve never been tested in the real world. This study aims at addressing that gap by creating a complete STMS that is applicable 

to commercial EV systems and can be scaled up. This work is more than theoretical; it leverages real sensor networks in concert 

with AI models on real battery packs. 

III. METHODOLOGY 

A. The Goal of the Research 

The primary objective of this work is to enhance safety of electric vehicle (EV) batteries in the form of building and 

implementing a Smart Thermal Monitoring System (STMS). The proposed technology leverages cloud-based computing, AI-

driven prediction models and sophisticated sensors to monitor battery temperatures and predict performance in real time. The 

system is designed to revolutionise the approach to battery safety, from reactive to predictive. The STMS is designed to monitor 

sensor data and predict how things will heat up so it can detect initial overheating before things get out of control and shut down 

dangerous situations before they escalate. This approach also emphasizes the need to make the systems power efficient and 

scalable, which in turn maps well to different kinds of EV platforms. 

B. Parts of the System 

 Table 1: These are The Components of the Smart Thermal Monitoring System (STMS) 

 Component Description 

Smart Thermal Sensors Digital thermistors placed on each cell/module to monitor real-time 

temperature 

Microcontroller Unit 

(MCU) 

Arduino-based hardware that reads sensor data and processes basic diagnostics 

Communication Protocol MQTT (Message Queuing Telemetry Transport) for low-latency data 

transmission 

Cloud Platform AWS IoT Core used to store and analyze sensor data 

AI Prediction Model LSTM-based recurrent neural network to forecast potential overheating trends 
 

The STMS consists of a plurality of hardware and software blocks used to correlate, process and form a response to 

thermal data originating from the battery pack. To begin with, digital thermistors and other intelligent thermal sensors are 

applied directly on each battery cell or module. The surface temperature is communicated to the computer via these sensors at 1 

Hz. Second, we use an Arduino-based microcontroller unit (MCU) to read the sensors and to do some simple data processing, like 
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limit checking and value smoothing. The data transmits over MQTT, standing for Message Queuing Telemetry Transport. It is a 

lightweight form of computer conversation that performs best where there is low latency and low bandwidth. The information is 

then communicated to the cloud, the AWS IoT Core, and stored in an Amazon S3 bucket. The analytics engine sits in the cloud as 

well. It already has pre-trained Long Short-Term Memory (LSTM) model, which can help in locating the thermal anomalies. 
 

C. Data Set and Training 

We employed a test battery pack that was cycled between various load conditions to measure the temperatures over 60 

days. This allowed us to create the STMS and test its prediction performances. These were to be analogous to the way electric 

cars operate in the real world, depending on whether they are charging, discharging or simply sitting idle. The recorded data was 

composed of the air temperature, the cell-surface temperature, the cell surface voltage and the current-loading values as well as 

historical thermal anomalies. We programmed all of the continuous variables to sample with a 1 Hz rate to have a tool that could 

track the time very precisely. We preprocessed the raw data by removing outliers, filling missing values, and standardizing the 

input features. We obtained the anomaly labels by using domain-specific thresholds examined by experts. We then divided the 

dataset into three: the training set (70% of the total data), used to train the LSTM model with, and the validation (15% of the 

total data set), used to see how well the model worked after training, and the test set (15% of the total data), used to evaluate 

how well the model works after training. 

Table 2: What the Dataset Is About 

Parameter Data Type Frequency 

Ambient temperature Continuous 1 Hz 

Cell surface temperature Continuous 1 Hz 

Voltage load Continuous 1 Hz 

Current load Continuous 1 Hz 

Historical anomaly logs Categorical/Time Series Event-based 

D. How to Rate 

We also considered both classification and regression metrics to understand how the LSTM model performed after 

training. We employed accuracy to investigate the proportion of correct predictions, and precision to fell most of the predicted 

anomalies were true ones. We looked at recall to learn how many true anomalies the model picked up, and the F1 score to see 

how the balance of precision and recall worked out to tell us a bit more about how well it worked in the end. We calculated the 

Mean Absolute Error (MAE) to determine how many degrees, in Celsius, the average temperature prediction was off. These 

readings ensured that outliers were placed in the correct group and that temperature predictions were correct. 

IV. SYSTEM DESIGN 

A. A Broad View of Architecture 

There are three layers in the STMS architecture, based on a three-tier model to ensure ease in transferring data from 

sensing to acting. The Sensing Layer is the bottom layer. It has many thermal sensors, such as DS18B20 devices, distributed 

around. The sensors are either mounted on or in proximity to batteries cells and are able to monitor their temperature in real 

time. It’s accumulative data, once per second, and that’s a lot of data and it will give you insight into temperature changes early. 

The next layer is the Edge Processing Layer. The edge device is an Arduino based microcontroller with an integrated ESP32 Wi-Fi 

module. It acquires data from a variety of sensors, sifts it a bit and then compiles it for transmission. We'll use the MQTT 

protocol here to ensure quick and reliable bidirectional data transfer. The third layer is the Cloud Analytics Layer. The edge 

device is transmitting data to AWS IoT Core, and AWS IoT Core stores the data in Amazon S3 for further analysis. It sends the 

data to AWS SageMaker and does so through AWS Lambda functions. Then the guesses are made by the LSTM model. A failure 

notification is triggered, when the prognosticated temperature surpasses a predefined safety level. 

B. AI Model Pipeline 

The prediction engine of the STMS is a Long Short-Term Memory (LSTM) neural network model, suitable for data in a 

sequence of time points. This model takes 60 readings in the past and predicts how the temperature will be in the next 5 

minutes. If the predicted temperature exceeds a threshold safety temperature, the system flags this as potential dangerous. The 
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number of time steps, number of training epochs, optimization strategy, and loss function that were used to compare the 

performance, are among the most important parts of the LSTM model. The model is structured as in the following table: 

Table 3: Making the LSTM model work 

Parameter Value 

Time Steps 60 

Epochs 50 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 
 

The other model learns long-term patterns in the data, and so, the model is a good choice for prediction of thermal 

anomaly events which evolve slowly, and other methods may not observe. 

C. Alerts and Dashboard 

An AWS QuickSight was used to build a web-based dashboard that allows users to view temperature data in real time and 

in the recent past. Operators can view plot versus time graphics for each cell and observe how temperature profiles shift over 

time and from historical data, plan the maintenance schedule. When Amazon Simple Notification Service (SNS) sees something 

odd in temperature, it can send out SMS and email alerts. This is one more thing the dashboard can do. This multi-channel 

notification action system will make the system more responsive and ensure that safety alerts are quickly responded to. 

D. Good Use of Power 

That is why power consumption is crucial for battery monitoring systems. The STMS was made to be as energy-efficient 

as possible, and when it was on, it consumed less than 2 watts. For instance, when your EV is parked or charged, the device 

remains in a sleep mode, which helps save power. It is the MCU’s firmware that manages this behavior: It periodically checks 

sensor data and awakes the system when it observes something unusual. The STMS is not a large energy consumer, so it does 

not play a sizable role in the overall efficiency of the vehicle when it comes to energy. On the downside, that makes it ideally 

suited for small or mini EVs. 

V. RESULTS AND DISCUSSION 

A. How It Works—An Overview 

The Smart Thermal Monitoring System (STMS) developed in this work was tested in a battery pack configuration for 60 

days. The test examined two primary factors: How well the AI, which was built using an LSTM, or long short-term memory 

model, could monitor the temperature in real time, and how well it could spot potential problems before they occurred. Results 

demonstrated that not only were sensors data gathered and transmitted by the system in a reliable way, but it also yielded an 

accurate detection of thermal anomalies. This greatly improved early warnings from electric vehicle (EV) battery systems. 

B. How Does Real Time Tracking Work? 

The best thing about the STMS is that it is also capable of monitoring the battery temperatures in multiple cells at once. 

More than 5 million individual data points for temperature were acquired by the thermal sensors at a sample frequency of 1 Hz 

over the 60-day test period. The transmission model based on MQTT was highly efficient, the delay time from the sensor to the 

dashboard was shortened to less than 1.2 s. The AWS QuickSight data revealed that the temperature profiles did not change 

during a normal operation but changed significantly during a high-load or stress cycles. The dashboard did a great job flagging 

those and highlighting those, so it gave operators a really clear view of how things were changing over time and what patterns 

and trends were happening as well. 

C. The Good, the Bad and How AI Models Are When Making Predictions 

The LSTM model was then applied on a dataset that consisted of 15% of the entire data pool and checked to see how well 

the model could predict temperature trends in the future. Some of the most widely used performance evaluation metrics 

included Accuracy, Precision, Recall, F1-Score and the Mean Absolute Error (MAE). The model thought itself accurate 94.2% of 

the time, precise 91.7% of the time and 93.5% good at remembering things. The F1 score was 92.6% so we didn't have too many 

false positives or false negatives. The Mean Absolute Error of the temperature forecast was 0.81°C, good enough, the app being 

this large and sensitive. 
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 Table 4: LSTM Model Evaluation Metrics 

Metric Value 

Accuracy 94.2% 

Precision 91.7% 

Recall 93.5% 

F1-Score 92.6% 

MAE (°C) 0.81 
 

The LSTM model is able to keep track of normal operating patterns as well as detect subtle signs that a thermal runaway 

event is imminent. The model never detected dangerous temperatures too late; it always provided warnings 3 to 5 minutes 

before the temperature surpassed a safe threshold. This provided operators with ample time to intervene manually or initiate 

safety measures. 

D. Comparing to a Traditional BMS 

We considered in details how much better the STMS worked in comparison way a typical Battery Management System 

(BMS) with its threshold based alerts. By contrast, the STMS warned users of those types of events before they happened, 

looking at trending up patterns. The standard BMS didn’t sound the alarm until a cell reached 60°C; this early warning 

shortened response times a mean of 240 seconds, which might save lives when the mercury is high. 

Table 5: STMS vs. Traditional BMS Alert Timing 

Scenario BMS Alert Time STMS Alert Time Lead Time (seconds) 

Stress Test A T+0s T–237s 237 

Stress Test B T+0s T–249s 249 

Overcharge Simulation T+0s T–233s 233 

Deep Discharge Cycle T+0s T–246s 246 
 

This contrast illustrates the importance of predictive analytics in the BSS. These systems are able to react quickly, and 

help prevent a disaster before it occurs. 

E. Cloud Integration and System Dependability 

The system had an uptime of 99.6% during the test, but there were times when it wasn’t working because of delays in 

network communication or issues with cloud services. There were no occasion of data corruption, so both MQTT transmission 

and AWS IoT Core storage reliability level looks pretty high. Similarly, ability to scale in the cloud allowed for the processing of a 

lot of time series data without any latency or issues with system. That implies the STMS can integrate with large battery arrays 

already found in EVs used for business without requiring significant changes to the infrastructure. The cloud dashboard also 

enabled researchers and technicians to examine historical trends that revealed how the cells’ thermal performance varied over 

time and helped them detect patterns that might be useful for creating maintenance schedules or designing new cells in the 

future. 

F. Energy Efficiency and Power Use 

The STMS was engineered to consume as little power as necessary so that it would not place an overdemand on the car’s 

electrical system. The system consumed up to 1.6W average power during monitoring. When the vehicle was not in use, the 

system’s low power sleep mode reduced power usage to a meager 0,3W The energy efficiency shows that such monitoring 

systems can be implemented in electric cars without compromising their performance or range. 

G. Limitations and Future Work 

There are, however, some issues with the system even if it is a good one. The trustworthiness of the tested AI model 

depends on the quality and the diversity of the training dataset. Predictions may be less reliable in extreme scenarios not 

encountered during training. The existing model is also optimized for battery packs that are small to medium in size, so it will 

need to be adapted to the larger packs used in commercial EVs, which have more cells. We are going to attempt to include other 

types of sensors in the future, such as humidity and internal cell impedance sensors. We will also consider federated learning for 

decentralized prediction as well as edge-AI for onboard analytics that don’t require the cloud as heavily. A feedback system for 
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real-time control — for example, a feedback mechanism that automatically shuts down cells when they overheat — could also 

help make STMS that much better at preventing problems before they occur. 

VI. CONCLUSION 

Nowadays, battery safety and performance have become one of the most critical engineering problems as electric vehicles 

(EVs) are becoming increasingly popular. This research demonstrated that it is possible to design, fabricate and test a Smart 

Thermal Monitoring System (STMS) making lithium ion battery packs for an electric vehicle significantly safer with respect to 

heat. The proposed STMS is unlike other battery management systems as it involves static threshold based warnings. For that, it 

relies on a clever, network-connected system that discovers and resolves thermal issues before they escalate to become larger 

ones. The STMS is pro-active and based on real time temperature sensing, predictive analytics, and cloud intelligence. Thermal 

sensors integrated into battery cells and modules and a microcontroller-based edge-processing unit ensure consistent and 

credible data acquisition by the system. The MQTT protocol ensures data is sent quickly to the cloud with minimal payload. 

Advanced processing is done on these, in particular by machine learning models such as a Long Short-Term Memory (LSTM) 

neural network. 

A. The Benefits of the System Are Many 

Higher Safety: The STMS is awesome because in can detect the beginning of thermal runaway. The predictive LSTM 

model can predict how things will thermally behave in the short term and alert you to any issues before they get out of control. 

Before an explosion, fire, or permanent battery damage occurs, this early warning system can initiate any number of safety 

measures, such as controlled cooling, disconnecting cells, or sending some sort of emergency shutdown command. Longer 

Battery Life: STMS brings better batteries by locating and eliminating overheating. Batteries degrade rapidly if they become too 

hot. These predictive interventions allowed you to use temperature control that might not stress the cells as much, so you get 

more life out of the battery. All sensor information and temperature problems are sent to the cloud immediately by the system. 

This allows data analytics dashboards to reflect historical data and trend analysis. Fleet managers, electric vehicle manufacturers 

and maintenance teams might use that information to schedule maintenance, investigate chronic hotspots or alter their thermal 

design strategies. When you have this kind of understanding, maintenance stops being reactive and becomes proactive. 

The STMS is an elegant, scalable and feasible response to one of the most pressing issues in EV tech, the study suggests. 

The implementation appears to be promising not only for consumer electric cars, but also for industrial and business-oriented 

electric cars where uptime and safety are serious considerations. “They could potentially make STMS faster and less cloud 

dependent by adding edge machine learning technologies down the line. Other sensors measuring humidity, pressure and 

vibration would also contribute to make the system for monitoring battery health more thorough and intricate. Federated 

learning might even allow many cars to train models without endangering the privacy of their data. The Smart Thermal 

Monitoring System is major step in addressing smart and safe and self-controlled management of EV batteries. As the space 

expands, new technologies like STMS will be critical to ensure that the next generation of electric vehicles are safe, perform well, 

and have a long life. 
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