Original Article

Innovative Approaches in Power Electronics For Cyber-Physical Systems Using Smart Grids

Mrs. Thilagavathy J¹, Ramalakshmi A²

^{1,2}Department of Electrical and Electronics Engineering, Grace College Of Engineering, Mullakkadu, Thoothukudi.

Abstract: This project, titled "Innovative Approaches in Power Electronics for Cyber-Physical Systems Using Smart Grids," explores advanced methodologies to enhance the quality and reliability of power systems. By integrating smart grid technologies and infrastructures, this initiative addresses the key challenges and vulnerabilities of traditional power grids. The proposed system employs wireless communication for real-time data transmission, ensuring seamless and efficient operations. A significant aspect of the project is the reconfirmation of the importance of timely applied load-shedding actions to prevent voltage collapse. The method for calculating critical load-shedding times is highlighted to maintain voltage stability when systems lose their regulation capability. Moreover, the incorporation of solid-state switches enhances system responsiveness and efficiency by enabling faster switching times, reducing power losses, and improving overall reliability. Furthermore, the project leverages IoT-based techniques to facilitate more manageable and effective load shedding control. Emphasizing load shedding on more critical buses yields more desirable results, demonstrating the project's potential to significantly improve power grid performance. This abstract encapsulates the innovative approaches in power electronics applied to cyber-physical systems using smart grids, aiming for a more resilient and reliable power infrastructure.

Keywords: Power Electronics, Cyber-Physical Systems, Smart Grids, Advanced Control Systems, Energy Management, Distributed Energy Resources (DERs), Grid Integration.

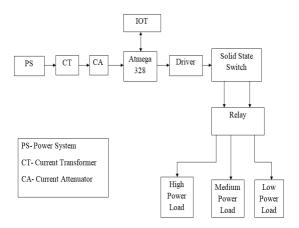
INTRODUCTION

Aquaculture has been utilized as the substitute source of fish for human consumption to aid the declining global wild fish capture counts since the 1990s. It has been supplying the increasing demand for fish in the world market, which avoids increasing its price. Due to the nutritional contents of fish and its affordability the complementary relationship of fisheries' wild capture and aquaculture production significantly contributes to reducing poverty, livelihood, and sustaining food security, especially in developing countries and those countries heavily affected by the climate change Subsequently, aquaculture will be the primary source of fish for human consumption by In aquaculture, feed meal accounts for 65% to 70% of the overall expenses for fish production. The advantage of online and real-time monitoring, such as the use of the Internet of Things and Cloud, includes tracking capability, anomaly detection & prediction, and ease of access Globally, the Nile tilapia (Oreochromis niloticus) is ranked as one of the most cultured freshwater fish because it is affordable, mild in taste, and has high nutritional value Generally, the cultured Nile tilapia can be fed with farm made and commercial feeds. Between the sinking and the floating commercial feed pellets, the floating feed pellets reported favorable growth rates compared to the sinking pellets.

SYSTEM IMPLEMENTATION

2.1 Existing System:

The existing power grid system relies on traditional methodologies and infrastructure, presenting several limitations and challenges. Load shedding is a manual process prone to delays and human errors, especially during peak load conditions or emergencies, which can result in voltage instability and power outages. Voltage regulation is inadequate, often causing voltage collapses and other power quality issues. Additionally, the integration of Internet of Things (IoT) technologies is minimal, resulting in a lack of automated, intelligent control over load shedding and other critical operations. These limitations underscore the need for a transition to a more advanced smart grid system, incorporating innovative approaches power electronics for enhanced reliability, efficiency, and resilience.


2.2 Proposed System:

The proposed system, titled "Innovative Approaches in Power Electronics for Cyber-Physical Systems Using Smart Grids," aims to revolutionize the current power grid infrastructure by integrating advanced

technologies and methodologies. This system employs wireless communication for real-time data transmission, ensuring prompt decision-making and efficient operation. The system leverages IoT technologies for intelligent and automated control, making load-shedding management more effective. Additionally, it ensures better voltage stability and seamless integration with cyber-physical systems (CPS), addressing vulnerabilities such as increasing demand, renewable energy integration, and cyber threats. By enhancing the grid's reliability, efficiency, responsiveness, and security, the proposed system provides a robust and advanced solution for modern power infrastructure.

2.3 Block Diagram:

2.3.1 Block Diagram Description:

Power System

• This block represents the main power source, which could be from a conventional power plant or renewable energy sources integrated into the smart grid.

Current Transformer

• The current transformer is used to measure the current flowing through the power system. It steps down high current to a lower, manageable level suitable for measurement and monitoring.

Current Attenuator

• The current attenuator further processes the output from the current transformer, reducing the current signal to a level that can be safely and accurately read by the microcontroller (ATmega 328).

ATmega 328 Microcontroller

• This microcontroller is the brain of the system. It receives signals from the current attenuator, processes the data, and makes decisions based on pre-programmed algorithms. It can control various outputs based on the current readings and system requirements.

Driver

• The driver interfaces between the microcontroller and the solid-state switch or relay. It amplifies the control signals from the microcontroller to a level sufficient to operate the switching devices.

Solid State Switch

• A solid-state switch is used for high-speed switching and control of electrical loads. It provides a reliable and fast response without mechanical wear and tear.

Relay

• The relay is an electromechanical switch used to control the connection and disconnection of electrical loads. It can handle higher current loads but operates slower compared to solid-state switches.

High Power Load

• Represents high-power-consuming devices or systems, such as industrial machinery or large HVAC units, connected to the smart grid.

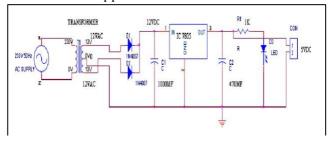
Medium Power Load

 Represents medium power-consuming devices or systems, such as smaller commercial equipment or moderate household appliances.

Low Power Load

 Represents low-power-consuming devices, such as lighting systems, small household appliances, or electronics.

2.4 Circuit Diagram:


2.4.1 Circuit Diagram Description:

The main power source providing the electrical energy to the grid. This could be AC power from a utility or DC power from a renewable source like solar panels. Current Transformer (CT) Measures the current flowing through the power system. Connected in series with the power line to measure the current. Provides a scaled-down AC current proportional to the main line current. Current Attenuator Converts the current transformer's output to a lower voltage signal suitable for the microcontroller. Typically includes resistors and possibly operational amplifiers to attenuate and condition the signal. Provides a low-voltage AC signal proportional to the main line current. ATmega 328 Microcontroller Processes the signal from the current attenuator, performs computations, and generates control signals. Analog Input receives the attenuated current signal for processing. Driver Circuit Amplifies the control signals from the microcontroller to a level sufficient to drive the solid-state switches and relays. Transistors, MOSFETs, or dedicated driver ICs. Connected to the digital outputs of the microcontroller. Connected to the control terminals of the solid-state switch and relays. Solid State Switch (SSS) Provides fast and reliable switching of electrical loads without mechanical wear. Relay Electromechanical switch used to control medium and low load devices. Receives the amplified control signal from the driver. Connected to medium and low load devices. Often requires a separate power source for the coil, which can be managed by the driver circuit. High Load Connected through the solid-state switch, typically high power-consuming device Medium Load Connected through the relay, typically medium powerconsuming devices. Low Load Connected through the relay, typically low power-consuming devices.

HARDWARE DETAILS

3.1 Single Power Supply:

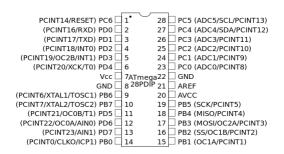
Power supply gives supply to all components. It is used to convert AC voltage into DC voltage. Transformer used to convert 230V into 12V AC.12V AC is given to diode. Diode range is 1N4007, which is used to convert AC voltage into DC voltage. AC capacitor used to charge AC components and discharge on ground. LM 7805 regulator is used to maintain voltage as constant. Then signal will be given to next capacitor, which is used to filter unwanted AC component. Load will be LED and resister.LED voltage is 1.75V.if voltage is above level beyond the limit, and then it will be dropped on resister.

3.2 Atmega 328:

ATMEGA 328 microcontroller, which acts as a processor for the Arduino board. Nearly it consists of 28 pins. From these 28 pins, the inputs can be controlled by transmitting and receiving the inputs to the external device. It also consists of pulse width modulation (PWM). These PWM are used to transmit the entire signal in

a pulse modulation. Input power supply such as Vcc and Gnd are used. These IC mainly consists of analog and digital inputs. These analog and digital inputs are used for the process of certain applications.

3.2.1 Description Of Input:


Analog Input:

Arduino atmega-328 microcontroller board consist of 6 analog inputs pins. These analog inputs can be named from A0 to A5. From these 6 analog inputs pins, we can do the process by using analog inputs. Analog inputs can be used in the operating range of 0 to 5V. Analog signal is considered as the continuous time signal, from which these analog signal can be used for certain applications. These are also called as non-discrete time signal. Inputs such as voltage, current etc.., are considered to be either analog signal or digital signal only by analyzing the time signal properties. Various applications of Arduino microcontroller can use only an analog input instead of digital inputs. For these applications, analog input ports or pins can be used.

Digital Input:

Digital inputs can be defined as the non-continuous time signal with discrete input pulses. It can be represented as 0's and 1's. These digital inputs can be either on state or in off state. Arduino atmega328 microcontroller also consists of 12 digital input pins. It can be stated as D0 to D11. Nearly 12 inputs can be used for digital input/output applications. The working of the digital input ports is where the discrete input pulses can be triggered and supplied to the ports. These ports receive the input and therefore the port can be used for both input and output process. These digital pins can access only the digital inputs.

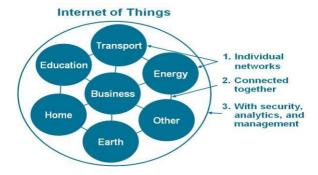
3.2.2 Atmega-328 Ic:

This ATMEGA-328 integrated chip consists of 28 pins. It consists of 6 analog inputs that are shown in the pin diagram. Analog inputs can be represented as PC0 to PC5. These analog input pins possess the continuous time signal which acts as an analog input for the system. These PWM, which transmits the signal in the form of discredited form. Both analog and digital input ports can be used for various applications for the input power supply, VCC and GND pins are used. Pins PB6 and PB7, which acts as a crystal to generate a clock signal. By using these crystal, we can generate the clock signals and by these clock signals, we can use this clock signals for input sources. PC6 pin are the one where it can be used for the reset option. Resetting the program can be done by using this PC6 pin.

3.3 Wi-Fi Module (Esp8266):

The ESP8266 WiFi Module is a self-contained SOC with integrated TCP/IP protocol stack that can give any microcontroller access to your WiFi network. The ESP8266 is capable of either hosting an application or offloading all Wi-Fi networking functions from another application processor. Each ESP8266 module comes pre-programmed with an AT command set firmware, meaning, you can simply hook this up to your Arduino device and get about as much WiFi-ability as a WiFi Shield offers (and that's just out of the box)! The ESP8266 module is an extremely cost effective board with a huge, and ever growing, community.

3.4 LCD - Liquid Crystal Display:



Liquid Crystal Displays (LCDs) have materials, which combine the properties of both liquid and crystals. Rather than having a melting point, they have a temperature range within which the molecules are almost as mobile as they would be in a liquid, but are grouped together in an ordered form similar to a crystal. An LCD consists of two glass panels, with the liquid crystal material sand witched in between them. The inner surface of the glass plates are coated with transparent electrodes which define the character, symbols or patterns to be displayed polymeric layers are present in between the electrodes and the liquid crystal, which makes the liquid crystal molecules to maintain a defined orientation angle. One each polarizer are pasted outside the two glass panels.

3.5 Internet of Things (IoT):

The Internet of Things (IoT) is the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data. IoT allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit.

IoT as a Network of Networks:

These networks connected with added security, analytics, and management capabilities. This will allow IoT to become even more powerful in what it can help people achieve.

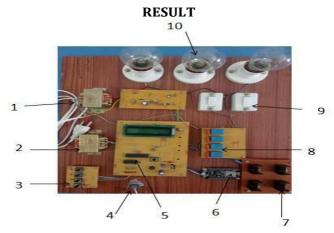


Figure 5.1: Hardware setup for "Innovative Approaches in Power Electronics for Cyber-Physical Systems Using Smart Grids"

The above figure 5.1 is hardware setup following components for

- 1. Current Transformer
- 2. Power Transformer
- 3. Local control switch
- 4. Mode selection Online/offline
- 5. Driver IC ULN 2003
- 6. Wi-Fi Node MCU
- 7. Solid state switch
- 8. Relay 12V coil
- 9. Load On/Off Switch
- 10. Lamp Load

Figure 5.2: IoT page

The above figure 5.2 known as login page of our website the user id "admin" password "admin"

Figure 5.3: Hardware setup for local control mode

Figure 5.4: Hardware display

The figure 5.4 known as hardware display C load current value, M mode for offline or online, L for Local control and O is online control.

Figure 5.5: IoT page for Offline mode

The above fig: 5.5 is an IoT monitoring page for "status for offline line mode (or) online mode, Current is load side current value and mode of operation is a power mode for Low power, Normal power and High power mode" and the frequency chart and enter the frequency panel.

Figure 5.6: Low Power mode for local LCD display.

Figure 5.7: IoT page Low power mode monitor

The above figure 5.6 and 5.7 is hardware side display unit and IoT side monitoring page. Our project grid frequency 48Hz Low power mode minimum load power 60watts.

Figure 5.8: Normal Power mode for local LCD display.

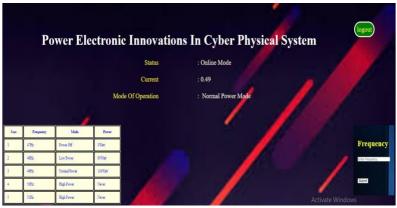


Figure 5.9: IoT page Normal power mode monitor

The above figure 5.8 and 5.9 is hardware side display unit and IoT side monitoring page. Our project grid frequency 49Hz Normal power mode minimum load power 100watts.

Figure 5.10: High Power mode for local LCD display.

Figure 5.11: IoT page High power mode monitor

The above figure 5.10 and 5.11 is hardware side display unit and IoT side monitoring page. Our project grid frequency 50Hz High power mode load power Never.

Figure 5.12: Power Off mode for local LCD display.

Figure 5.13: IoT page Power off mode monitor

The above figure 5.12 and 5.13 is hardware side display unit and IoT side monitoring page. Our project grid frequency below 48Hz Power off mode.

CONCLUSION

This project, —Innovative Approaches in Power Electronics for Cyber-Physical Systems Using Smart Grids,|| significantly enhances the quality and reliability of the power system. The technologies and infrastructure of this smart grid system are designed to address all the challenges and vulnerabilities it faces. The system's technical feasibility ensures that there should be no obstacles preventing the transition to a smart grid. The proposed system utilizes wireless communication for real-time data transmission. This project has reconfirmed the importance of timely applied load-shedding actions. If these actions are not performed promptly, more severe load-shedding measures must be taken to prevent voltage collapse. Voltage instability occurs when systems lose their voltage regulation capability, and a method for calculating the critical load-

shedding time has been presented. Furthermore, incorporating solid-state switches into the system enhances its responsiveness and efficiency. Solid-state switches enable faster switching times, reduced power losses, and improved reliability, which are crucial for maintaining stability and performance in smart grids. Finally, by using IoT-based techniques, the control of load shedding becomes more manageable. It has been demonstrated that emphasizing load shedding on a more critical bus yields better results, as anticipated.

REFERENCE

- [1] G. Bedi, G. Venayagamoorthy, R. Singh, and R. R. Brooks, —Review of Internet of Things (IoT) in Electric Power and Energy Systems, || *IEEE Internet Things J.*, vol. 5, no. 2, pp. 847–870, 2018.
- [2] J. He, S. Member, J. Wei, K. Chen, and Z. Tang, —Multitier Fog Computing With Large-Scale IoT Data Analytics for Smart Cities,|| IEEE Internet Things I., vol. 5, no. 2, pp. 677–686, 2018.
- [3] H. Ngu, M. Gutierrez, V. Metsis, and Q. Z. Sheng, —IoT Middleware: A Survey on Issues and Enabling Technologies, || *IEEE Internet Things J.*, vol. 4, no. 1, pp. 1–20, 2017.
- [4] Y. Shekhar, E. Dagur, S. Mishra,—Intelligent IoT based automated irrigation system, || Int. J. Appl. Eng. Res., vol. 12, no. 18, 2017.
- [5] Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, —Internet of Things for Smart Cities, || *IEEE Internet Things J.*, vol. 1, no. 1, pp. 22–32, 2014.
- [6] F. Montori, L. Bedogni, and L. Bononi, —A Collaborative Internet of Things Architecture for Smart Cities and Environmental Monitoring, || *IEEE Internet Things J.*, vol. 5, no. 2, pp. 592–605, 2018.
- [7] EPSRC, —REFIT: Smart homes and energy demand reduction.||
- [8] J.-C. Kim, S.-M. Cho, and H.-S. Shin, —Advanced Power Distribution System Configuration for Smart Grid,|| *IEEE Trans. Smart Grid*, vol. 4, no. 1, pp. 353–358, 2013.
- [9] P. Kulkarni, S. Gormus, Z. Fan, and F. Ramos, —AMI Mesh Networks—A Practical Solution and Its Performance Evaluation, | *IEEE Trans. Smart Grid*, vol. 3, no. 3, pp. 1469–1481, 2012.
- [10] P.Balakrishna, K.Rajagopal, and K.S.Swarup, —Analysis on AMI system requirements for effective convergence of distribution automation and AMI systems, || *Proc. 6th IEEE Power India Int. Conf. PIICON*, 2014.
- [11] N. Saputro and K. Akkaya, —Investigation of Smart Meter Data Reporting Strategies for Optimized Performance in Smart Grid AMI Networks, | IEEE Internet Things J., vol. 4, no. 4, pp. 894–904, 2017.
- [12] J. Garcia-Hernandez, —Recent Progress in the Implementation of AMI Projects: Standards and Communications Technologies, || *Int. Conf. Mechatronics, Electron. Automot. Eng. ICMEAE*, pp. 251–256, 2016.
- [13] Naga Ramesh Palakurti, 2023. "Evolving Drug Discovery: Artificial Intelligence and Machine Learning's Impact in Pharmaceutical Research" ESP Journal of Engineering & Technology Advancements 3(3): 136-147. [Link]
- [14] Naga Ramesh Palakurti, 2022. "AI Applications in Food Safety and Quality Control" ESP Journal of Engineering & Technology Advancements 2(3): 48-61. [Link]
- [15] Chanthati, S. R. (2024). An automated process in building organic branding opportunity, budget Intensity, recommendation in seasons with Google trends data. Sasibhushan Rao Chanthati. https://doi.org/10.30574/wjaets.2024.12.2.0326
- [16] Kumar Shukla, Nimeshkumar Patel, Hirenkumar Mistry, 2024." Securing The Cloud: Strategies and Innovations In Network Security For Modern Computing Environments" Volume 11, Issue 04 pp. 1786-1796. [Link]
- [17] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Verification of Low-Power Semiconductor Designs Using UVM", ESP Journal of Engineering & Technology Advancements 4(3): 28-44.
- [18] Doctor, A., B. Vondenbusch, and J. Kozak. "Bone segmentation applying rigid bone position and triple shadow check method based on RF data." Acta of Bioengineering and Biomechanics, 13.2 (2011): 3-11.
- [19] Jaseem Pookandy, Enhancing Customer Relationship Management with Salesforce: A Comprehensive Review, International Journal of Computer Engineering and Technology (IJCET), 15(4), 2024, pp. 64-84
- [20] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Energy-Efficient FPGA Design for Wearable and Implantable Devices" ESP International Journal of Advancements in Science & Technology (ESP-IJAST) Volume 2, Issue 2: 37-51.
- [21] Jacopo Pianigiani, Michal Styszynski, Atul S Moghe, Joseph Williams, Sahana Sekhar Palagrahara Chandrashekar, Tong Jiang, Rishabh Ramakant Tulsian, Manish Krishnan, Soumil Ramesh Kulkarni, Vinod Nair, Jeba Paulaiyan, Sukhdev S. Kapur, Ashok Ganesan, 2020. *Automation of Maintenance Mode Operations for Network Devices*, US10742501B1. [Link]
- [22] Chandrakanth Lekkala, "Utilizing Cloud Based Data Warehouses for Advanced Analytics: A Comparative Study", International Journal of Science and Research (IJSR), Volume 11 Issue 1, January 2022, pp. 1639-1643, https://www.ijsr.net/getabstract.php?paperid=SR24628182046
- [23] Julian, Anitha, Mary, Gerardine Immaculate, Selvi, S., Rele, Mayur & Vaithianathan, Muthukumaran (2024) Blockchain based solutions for privacy-preserving authentication and authorization in networks, *Journal of Discrete Mathematical Sciences and Cryptography*, 27:2-B, 797–808, DOI: 10.47974/JDMSC-1956
- [24] Muthukumaran Vaithianathan, 2024. "Digital Signal Processing for Noise Suppression in Voice Signals", IJCSPUB INTERNATIONAL JOURNAL OF CURRENT SCIENCE (www.IJCSPUB.org), ISSN: 2250-1770, Vol.14, Issue 2, page no.72-80, April-2024, Available: https://rjpn.org/IJCSPUB/papers/IJCSP24B1010.pdf

International Conference on Exploring AI, IOT, Science & Technology (ICEAIST)-2024

- [25] Muthukumaran Vaithianathan, "Real-Time Object Detection and Recognition in FPGA-Based Autonomous Driving Systems," *International Journal of Computer Trends and Technology*, vol. 72, no. 4, pp. 145-152, 2024. Crossref, https://doi.org/10.14445/22312803/IJCTT-V72I4P119
- [26] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2023. "Comparative Study of FPGA and GPU for High-Performance Computing and AI" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 1, Issue 1: 37-46. [PDF]
- [27] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Low-Power FPGA Design Techniques for Next-Generation Mobile Devices" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 2: 82-93. [PDF]
- [28] Dhamotharan Seenivasan, Muthukumaran Vaithianathan, 2023. "*Real-Time Adaptation: Change Data Capture in Modern Computer Architecture*" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 1, Issue 2: 49-61. [PDF]
- [29] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Integrating AI and Machine Learning with UVM in Semiconductor Design" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 3: 37-51. [PDF]
- [30] Chanthati, Sasibhushan Rao. (2021). A segmented approach to encouragement of entrepreneurship using data science. World Journal of Advanced Engineering Technology and Sciences. https://doi.org/10.30574/wjaets.2024.12.2.0330, [link]
- [31] Patel, N. (2024, March). SECURE ACCESS SERVICE EDGE(SASE): "EVALUATING THE IMPACT OF CONVEREGED NETWORK SECURITYARCHITECTURES IN CLOUD COMPUTING." Journal of Emerging Technologies and Innovative Research. https://www.jetir.org/papers/JETIR2403481.pdf
- [32] Vishwanath Gojanur , Aparna Bhat, "Wireless Personal Health Monitoring System", IJETCAS:International Journal of Emerging Technologies in Computational and Applied Sciences,eISSN: 2279-0055,pISSN: 2279-0047, 2014. [Link]
- [33] Mistry, H., Shukla, K., & Patel, N. (2024). Transforming Incident Responses, Automating Security Measures, and Revolutionizing Defence Strategies through AI-Powered Cybersecurity. Journal of Emerging Technologies and Innovative Research, 11(3), 25. https://www.jetir.org/
- [34] Aparna Bhat, "Comparison of Clustering Algorithms and Clustering Protocols in Heterogeneous Wireless Sensor Networks: A Survey," 2014 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)-ISSN: 2349-4689 Volume 04- NO.1, 2014. [Link]
- [35] Shashikant Tank Kumar Mahendrabhai Shukla, Nimeshkumar Patel, Veeral Patel, 2024." AI BASED CYBER SECURITY DATA ANALYTIC DEVICE", 414425-001, [Link]
- [36] Aparna Bhat, Rajeshwari Hegde, "Comprehensive Study of Renewable Energy Resources and Present Scenario in India," 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, TN, India, 2015. [Link]
- [37] Sarangkumar Radadia Kumar Mahendrabhai Shukla ,Nimeshkumar Patel ,Hirenkumar Mistry,Keyur Dodiya 2024." CYBER SECURITY DETECTING AND ALERTING DEVICE", 412409-001, [Link]
- [38] Aparna K Bhat, Rajeshwari Hegde, 2014. "Comprehensive Analysis Of Acoustic Echo Cancellation Algorithms On DSP Processor", International Journal of Advance Computational Engineering and Networking (IJACEN), volume 2, Issue 9, pp.6-11. [Link]
- [39] Nimeshkumar Patel, 2022." QUANTUM CRYPTOGRAPHY IN HEALTHCARE INFORMATION SYSTEMS: ENHANCING SECURITY IN MEDICAL DATA STORAGE AND COMMUNICATION", Journal of Emerging Technologies and Innovative Research, volume 9, issue 8, pp.g193-g202. [Link]
- [40] Bhat, A., & Gojanur, V. (2015). Evolution Of 4g: A Study. International Journal of Innovative Research in ComputerScience & Engineering (IJIRCSE). Booth, K. (2020, December 4). How 5G is breaking new ground in the construction industry. BDC Magazine.https://bdcmagazine.com/2020/12/how-5g-is-breaking-new-ground-in-the-constructionindustry/. [Link]
- [41] Nimeshkumar Patel, 2021." SUSTAINABLE SMART CITIES: LEVERAGING IOT AND DATA ANALYTICS FOR ENERGY EFFICIENCY AND URBAN DEVELOPMENT", Journal of Emerging Technologies and Innovative Research, volume 8, Issue 3, pp.313-319. [Link]
- [42] Bhat, A., Gojanur, V., & Hegde, R. (2014). 5G evolution and need: A study. In International conference on electrical, electronics, signals, communication and optimization (EESCO) 2015. [Link]
- [43] A. Bhat, V. Gojanur, and R. Hegde. 2015. 4G protocol and architecture for BYOD over Cloud Computing. In Communications and Signal Processing (ICCSP), 2015 International Conference on. 0308-0313. Google Scholar. [Link]
- [44] Anusha Medavaka, 2024. "AWS AI from Financial Services Transforming Risk Management and Investment Strategies" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 3: 116-129.
- [45] Muthukumaran Vaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Verification of Low-Power Semiconductor Designs Using UVM", ESP Journal of Engineering & Technology Advancements 4(3): 28-44.
- [46] Lakshmana Kumar Yenduri, 2024. "Low Latency High Throughput Data Serving Layer for Generative AI Applications using the REST-based APIs" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 3: 61-76
- [47] Anusha Medavaka, 2023. "Building Intelligent Systems on AWS: From Data Lakes to AI-Powered Insights", ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 1, Issue 3: 68-80.
- [48] Radhika Kanubaddhi, "Real-Time Recommendation Engine: A Hybrid Approach Using Oracle RTD, Polynomial Regression, and Naive Bayes," SSRG International Journal of Computer Science and Engineering, vol. 8, no. 3, pp. 11-16, 2021. Crossref, https://doi.org/10.14445/23488387/IJCSE-V8I3P103

International Conference on Exploring AI, IOT, Science & Technology (ICEAIST)-2024

- [49] Radhika Kanubaddhi, 2022. "Designing an Enterprise-Grade, Cloud-Native Chatbot Solution for the Hospitality Industry Using Azure QnA Maker and Azure LUIS", ESP Journal of Engineering & Technology Advancements, 2(1): 56-62. https://espjeta.org/jeta-v2i1p108
- [50] Neha Kulkarni, "Quality engineering for Network Security Products: Lessons and Best Practices", N. American. J. of Engg. Research, vol. 4, no. 1, Mar. 2023, Accessed: Oct. 21, 2024. [Online]. Available: https://najer.org/najer/article/view/38
- [51] Neha Kulkarni, "Automated testing as part of CI/CD pipeline shift left implementation", N. American. J. of Engg. Research, vol. 1, no. 3, Aug. 2020, Accessed: Oct. 21, 2024. [Online]. Available: https://najer.org/najer/article/view/62
- [52] Gokul Ramadoss, 2023. "Cloud Migration Strategies for EDI Transactions in Healthcare Payor Ecosystems", N. American. J. of Engg. Research, vol. 4, no. 3, Aug. 2023, Accessed: Oct. 18, 2024. [Online]. Available: https://najer.org/najer/article/view/42
- [53] Gokul Ramadoss, 2023. "Adoption of Care Management Applications in Healthcare", Journal of Health Statistics Reports, Volume 2, Issue 3, PP 1-5, [Link]