Original Article

IDVR Uses Interline Dynamic Voltage Restorer Converters and Gating Circuits

Dr.M.Sangeetha¹, Dr. R. Gomathi², S.Arunakumari³, N.Sithivinayagam⁴, R. Arunkumar⁵

- ¹ Department EEE, M.A.M. School Of Engineering (AUTONOMOUS), Siruganur, Trichy, India
- ²Department EEE ,MRK Institute of Technology , Tamilnadu, India.
- ³Department, AI&DS, IFET College of Engineering and Technology, Villupuram, India.
- ⁴Department, Mechanical, MRK Institute of Technology, Tamilnadu, India.
- ⁵Department, Mech, MRK Institute of Technology, Tamilnadu, India.

Abstract: Context and Current Status of Art Due to the increasing use of electronic devices, loads are growing less resilient to transient voltage fluctuations, called voltage sag. A range of devices called Custom Power is a technology-driven product and service solution that offers functionalities for improving power quality. The dynamic voltage restorer (DVR) is the most technologically sophisticated and cost-effective device for mitigating voltage-sag in distribution systems among the various innovative custom-power devices. In order to increase voltage quality by adjusting voltage magnitude, wave form, and phase shift, the standard DVR works by injecting AC voltages in series with the incoming three-phase network. These load voltage characteristics are crucial since they have the potential to the protected load's performance. Real and reactive powers are injected into the distribution system as part of the voltage-sag adjustment, which establishes the energy storage device's capacity needed for the restoration plan. The voltage source inverter of the DVR has the ability to electrically create the reactive power needed. To achieve the real-power need, an external energy storage device is required. Therefore, while evaluating a DVR's capabilities, particularly for mitigating long-duration voltage sag, the highest amount of real power that can be delivered to the load during voltage-sag correction is a determining factor. Energy consumption can be decreased by using voltage injection with a suitable phase advance relative to the source side voltage. However, using will not be sufficient to meet the energy need.

Keywords: DVR, IDVR, FACTS, DSTATCOM, UPFC, DPFC, PWM

FACTS AND CLASSIFICATION

The common DC-link energy storage device's energy can be dynamically replenished thanks to the interline IDVR. Two DVRs that protect critical loads in separate distribution feeders that originate from separate grid substations make up the IDVR system. These DVRs share a common DC link. At a particular substation, the issue of compensating several transmission lines is handled by the interline power-flow controller. While reactive power is adjustable within each individual line, the IPFC scheme allows for the direct transmission of real power between the compensated lines. Similar to the IPFC, the IDVR scheme offers a means of transferring actual power between sensitive loads in separate lines via the DVRs' shared DC link. Still, the IPFC's lines come from while the lines in the IDVR system come from many grid substations; they originate from a single grid substation. The other DVRs in the IDVR system replenish the DC-link energy to maintain the DC-link voltage at a predetermined level when one of the DVRs makes up for voltage sag by importing actual power from the DC link. With the need for quick reaction in the event of voltage dips and changes in the attached load, a DVR's control system is crucial. In DVR applications, two control techniques are typically utilized: open loop and closed loop. Voltage source converters, gating circuits, the classification of Flexible Alternating Current Transmission System (FACTS), and the fundamentals of DVR and IDVR operation

CUSTOM POWER DEVICES

The custom power devices are widely used to enhance the power quality during voltage sag, voltage swell, active filtering and load balancing. The custom power devices are divided into two types, one is compensating type and another is network reconfiguration type. Fig 1 shows the complete classification of custom power devices.

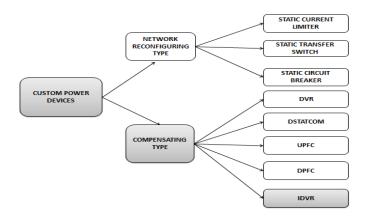


Fig 1 Classification of Custom Power Devices

CompensatingtypedevicesareclassifiedintoDVR,DSTATCOM,UPFC,DPFCand IDVR.

Dynamic Voltage Restorer (DVR)

DVRisaseriescompensatingdeviceusedinthedistributedfeedertocontrolthe load voltage by supplying the inverter AC voltage from the DC source. The block diagram of VSI controlled DVR is illustrated in Distributed Static Var Compensator (DSTATCOM)

DSTATCOM is a shunt compensation device which is used to control the level of bus voltage by injecting or absorbing the reactive power in the distributed power network..

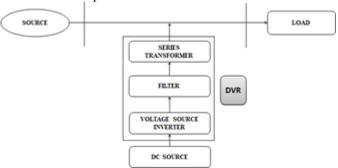


Fig 3 Block Diagram of DSTATCOM

Unified Power Flow Controller (UPFC)

UPFC is a combination of static synchronous series compensator(SSSC) and STATCOM, which are coupled through a common DC link. The DC link provides the bi-directional flow of real power between SSSC and STATCOM. Fig 5 shows the block diagram of UPFC.

Fig 3 Block Diagram of Unified Power Flow Controller

DISTRIBUTED POWER FLOW CONTROLLER (DPFC)

DPFC is one of the FACTS devices, which consists of number of DVR with one DSTATCOM connected in a distributed system to eliminate 3rdharmonic component. It transfersreal power between the shunt and series converters without using the common DC link. Shows the block diagram of DPFC.

INTERLINE DYNAMIC VOLTAGE RESTORER (IDVR)

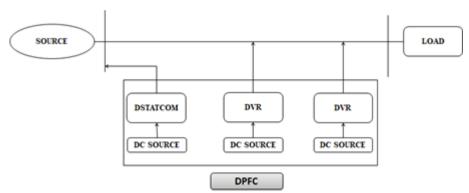


Fig 4 Block diagram of distributed power flow controller

IDVR system is used to compensate the voltage sag in two line distributed system using the common DC link. Fig 7 shows the block diagram of VSI controlled IDVR system.

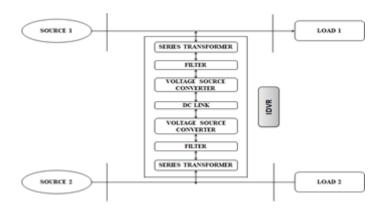


Fig 5 Block Diagram of Interline Dynamic Voltage Restorer

BASIC CONFIGURATION OF DVR AND ITS SCHEMATIC CIRCUIT

DVR is a series compensating device used in the distribution system to control the voltage sag in load side. The basic configuration of DVR consists of

- (i)Series transformer
- (ii) Harmonic filter
- (iii)Energy storage device
- (iv)Voltage Source Converter (VSC)

Schematic Diagram Of The DVR Is Shown In Fig

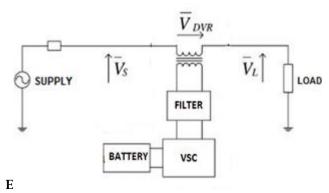


Fig 6 Schematic diagram of DVR

PRINCIPLEANDOPERATIONINVOLVEDINCOMPENSATINGVOLTAGE SAG/SWELL

The principle and operation of a DVR is that, it injects the variable controlled voltage generated by converter in series to the bus voltage. There are different methods available for operating the DVR, which primarily differs based on triggering pulses applied for the converter circuit. Sinusoidal pulsewidth modulation technique is employed for triggering the VSC circuit in the proposed work.

VOLTAGE SAG COMPENSATION USING DVR

ADVR is basically controlled by "voltage source converter" in series with the distributed network. If any disturbance occurs in load side, the DVR injects a voltage to compensate the drop. The efficiency of DVR depends upon the following factors:

- 1. Real power supplied
- 2. Maximum voltage injection.

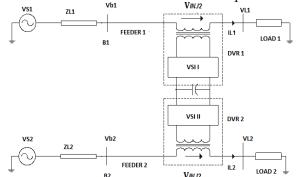
At abnormal condition voltage sag occur in load side which is compensated using the real power supplied by an energy storage device like a capacitor/ battery.

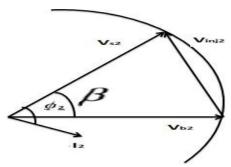
MODIFICATIONS MADE WITHCONVENTIONAL DVRINTRANSFORMING IT TO IDVR

In the conventional method, only one DVR is used to compensate the voltage sag in distribution feeder, but in proposed method two DVR is employed for protecting sensitive loads in different distribution feeders. These DVR's shares a common DC link. It provides a capability to transfer real power, directly between the two feeder lines

TOPOLOGY AND OPEARTION OF IDVR

IDVR system consists of two DVR connected back to back with a common DC link. Fig 9 shows the schematic diagram of two line IDVR system. Two DVRs of IDVR are connected to two various feeders which are fed from two grids with different sources. These two feeder voltage levels could be equal or different. Whenever the voltage sags occur in any one of the load, one of the DVR mitigates the voltage sag, the other DVR in IDVR system is operated in power flow control mode to restore the DC link capacitor.




Fig 7SchematicDiagram of two line IDVR system

The voltage sag in the power system occurs due to fault, which depends on many factors like fault current, different voltage level and transformer connecting arrangement. To overcome the above factors, the IDVR system should be connected in two feeders and each feeder is connected to two different grid sources

IDVRUSEDASREALANDREACTIVEPOWERENHANCEMENTOFFEEDER

Fig. 8 shows a Phasor diagram of real-power transfer between the two feeders, V_{s2} is the source voltage from feeder 2 and V_{b2} is the bus voltage from feeder 2. V_{s2} and V_{b2} injects the voltage V_{inj2} in feeder 2.

Fig.8 Phasor Diagram of Feeder 2 for Real-Power Transfer

IDVR system is operated dynamically with voltage source inverter. Mathematical Equation for real power exchange between the two feeders is shown as follows with two cases.

Case 1

Real power exchange between two feeders Feeder 2,

 $Pex2=3V12I12[cos~(\Phi2-\beta)-cos~(\Phi2)] \label{eq:percentage} \begin{tabular}{ll} (1)Let, S12=3V12I12 \\ S12-Apparent power \\ \beta-Advance phase angle \\ V12- load voltage that is coupled inline2For maximum real power \\ \beta=\Phi2 \end{tabular}$

$$\begin{split} & \text{Pex2=3Vl2Il2[cos } (\Phi \text{2-} \Phi \text{2})\text{-cos } (\Phi \text{2})] \\ & \text{Pex2=3Vl2Il2[cos } (0)\text{-cos } (\Phi \text{2})] \\ & (2)\text{Pex2(max) =Sl2[1-pf2]} \\ & \beta \text{max=} \Phi 2 \& \text{pf2=} \cos (\Phi \text{2}) \end{split}$$

Feeder 1,

$$P_{ex1} = P_{DVR1} + P_{losses}$$
 (3)

From (1) & (3), we get

$$P_{ex}=S_{12}[\cos (Φ_2-β)-\cos (Φ_2)]P_{ex}/S_{12}=[\cos (Φ_2-β)-\cos (Φ_2)]P_{ex}/S_{12}+pf_2=\cos (Φ_2-β)$$

$$Φ_2-β=\cos^{-1}[P_{ex}/S_{12}+pf_2]β=Φ_2-\cos^{-1}[P_{ex}/S_{12}+pf_2]$$

$$β=Φ_2-\cos^{-1}[P_{DV}R_1+P_{losses}/S_{12}+pf_2]$$
(4)

Case 2

In this case, the voltage is fed from common DC-link at dynamic storage, DVR operates on pre-sag voltage

injection between the two feeders. Then feeder 1 is generating sag factor and its mitigating voltage sag can be optimized using equation(4). The real power requirements is given below using the equation .5 DVR1 operating pre-sag voltage injection

PDVR1pr=Sl1[pf1-R/3(cos (
$$\Phi$$
1+ θ))] (5)
Y= Σ^3 j=1ajsin (δ j), & θ =tan⁻¹[Y/X]

The sag factor

aj = Vb1j/ Vl1

$$\beta = \Phi_2 - \cos^{-1}[[Sl1*(pf1-a*\cos(\delta+\theta)) + Plosses]/Sl2+pf2]$$
 (6)For maximum real power

transfer,

a=
$$[Sl1pf1+ Plosses- Sl2(1-pf2)]/ [Sl1cos (\Phi_1 + \delta)]$$
 (7)For optimum real power required

to mitigate voltage sag can be,

PDVR1>0

PDVR1opt=Sl1[pf1-R/3],Where α_{opt} = Φ_1 + θ

For a balanced 3Φ voltage sag with sag factor

R=3*a,

$$\beta = \Phi_2 - \cos^{-1}[[S11*(pf1-a*) + Plosses]/S12 + pf2]$$
 (8)

CONVERTERS AND GATING CIRCUITS USED IN IDVR

Voltage Source Converter

Fig shows the single phase converter circuit. It consists of four anti parallel diodes D1to D4, fours witching elements S1toS4andaDCbusvoltageVdc. The output voltage VOis obtained between two points A and B.

Fig9 Circuit Diagram of Single Phase Converter

The single phase converter has two control modes. The switches S1&S4 and S2&S3are used as a switch pair. Usually one pair of switches are turned on and turned off at the same time and at same duration. For the positive cycle, switches S1&S4 are turned on and output voltage is equal to the Vdc. For the negative cycle, switchesS2&S3 is turned on and the output voltage is equal to the -Vdc. The four quadrant operation of the single phase converter is shown in Fig 12.

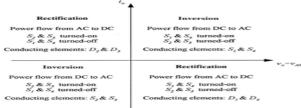


Fig10 Four Quadrant Operation of Single Phase Converter

Rectification process is carried out by turning on switches S1&S4 with remaining switches in off condition through conducting element D1& D4 or switches S3 &S2turned on with remaining switches in the off condition through conducting elementD2 & D3. Inversion process is carried out by turning on switches S1 & S4 with remaining' switches in off condition or switches S3 &S2 turned on with remaining switches in off condition

Pulse Width Modulation

The Pulse Width Modulation (PWM) is a technique which is characterized by the generation of constant amplitude pulse by modulating the pulse duration by modulating the duty cycle. PWM control techniques needs the development of carrier and reference signals that are fed to the comparator and logical conditions are implemented to get a final output. The reference signal is the fixed signal and output may be as quare wave/sinusoidal wave, while the carrier signal output may be triangular/saw tooth wave, carrier signal frequency value is much greater than the reference signal value. There are different types of PWM technique that are used for inverter to get a different output and the performance of inverter depends on noise, efficiency and cost.

Three basic PWM techniques that are normally preferred are

- (i)Single Pulse Width Modulation
- (ii) Multiple Pulse Width Modulation
- (iii)Sinusoidal Pulse Width Modulation

CONCLUSION

The reactive power requirement can be generated electronically within the voltage source inverter of the DVR. An external energy storage is necessary to meet the real-power requirement. Thus, the maximum amount of real power that can be supplied to the load during voltage-sag compensation is a deciding factor to analyze the capability of a DVR, especially for mitigating long-duration voltage sag. Voltage injection with an appropriate phase advance with respect to sources ide voltage can reduce the energy, FACTS classification ,basic principle and operation of the DVR and IDVR, converters and gating circuits used in IDVR were discussed.

REFERENCES

- [1] Electric Power Research Institute (EPRI). Power Quality in Commercial Buildings; BR-105018; EPRI: Palo Alto, CA, USA, 1995.
- [2] Koval, D.O.; Hughes, M.B. Canadian national power quality survey: Frequency of industrial and commercial voltage sags. IEEETrans. Ind. Appl. **1997**, 33, 622–627.
- [3] Sabin, D.D.; Electric Power Research Institute (EPRI). An Assessment of Distribution System Power Quality; EPRI-TR-106294-V2; EPRI: Palo Alto, CA, USA, 1996.
- [4] Hingorani, N. Introducing custom power. IEEE Spectr. 1995, 32, 41–48.
- [5] Pal, Y.; Swarup, A.; Singh, B.A. Review of compensating type custom power devices for power quality improvement. In
- [6] Proceedings of the 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, NewDelhi, India, 12–15 October 2008; pp. 1–8.
- [7] Praveena, S.; Kumar, B.S. Performance of custom power devices for power quality improvement. In Proceedings of the 2017 IEEEInternational Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September2017; pp. 912–917.
- [8] Nielsen, J.G.; Blaabjerg, F. A detailed comparison of system topologies for dynamic voltage restorers. IEEE Trans. Ind. Appl. **2005**,41, 1272–1280.
- [9] Inci, M.; Büyük, M.; Tan, A.; Bayındır, K.C.; Tümay, M. Survey of inverter topologies implemented in dynamic voltage restorers.
- [10] In Proceedings of the 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain,5–7 April 2017; pp. 1141–1146.
- [11] Sadigh, A.K.; Smedley, K.M. Review of voltage compensation methods in dynamic voltage restorer (DVR). In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8.
- [12] Nielsen, J.G.; Blaabjerg, F.; Mohan, N. Control strategies for dynamic voltage restorer compensating voltage sags with phase jump.In APEC 2001. In Proceedings of the Sixteenth Annual IEEE Applied Power Electronics

- Conference and Exposition, Anaheim, CA, USA, 4–8 March 2001; pp. 1267–1273.
- [13] Divit Gupta, AnushreeSrivastava "Investigating the Use of Artificial Intelligence in Talent Acquisition Procesdures" IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, vol. 12, no.11, pp. 77-87, 2023/ Crossrefhttps://doi.org/10.17148/IJARCCE.2023.121111
- [14] George, J.G.; Marín-Esponda, T.T. & Kumar-Dandpat, P. (2019). Analyzing the impact of excess inventory of California Glam to control the inventories of distributors by integrating product and distributor segmentation concept in the supply chain. Trabajo de obtención de grado, Especialidad en Gestión de la Cadena de Suministro. Tlaquepaque, Jalisco: ITESO.
- [15] A. Ganesh, R. Ramakrishnan, A. K. Sekar and J. Logeshwaran, "A Load Balancing Architecture to Improve the Security of Cloud Computing in the Disease Management Centers," 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon), Singapore, Singapore, 2023, pp. 1299-1305, doi: 10.1109/SmartTechCon57526.2023.10391528. | Google Scholar
- [16] KushalWalia, 2024. "Scalable AI Models through Cloud Infrastructure" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 2: 1-7. | Link
- [17] MuthukumaranVaithianathan, Mahesh Patil, Shunyee Frank Ng, Shiv Udkar, 2024. "Low-Power FPGA Design Techniques for Next-Generation Mobile Devices" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 2: 82-93. [PDF]
- [18] Sridhar Selvaraj, 2024. "SAP Supply Chain with Industry 4.0" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 1: 44-48. | Google Scholar
- [19] Bhattacharya, S. (2024). Decentralized Identity Verification via Smart Contract Validation: Enhancing PKI Systems for Future Digital Trust. International Journal of Global Innovations and Solutions (IJGIS). https://doi.org/10.21428/e90189c8.93f690d2
- [20] VenkataSathya Kumar Koppisetti, 2024. "Machine Learning at Scale: Powering Insights and Innovations" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 2: 56-61. [Link]
- [21] SumanthTatineni, AnirudhMustyala, 2024. "Leveraging AI for Predictive Upkeep: Optimizing Operational Efficiency" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 1: 66-79.
- [22] ArnabDey, "Innovative Approach to Mitigate Man-in-the-Middle Attacks i Secure Communication Channels", International Journal of Science and Research (IJSR), Volume 11 Issue 8, August 2022, pp. 1497-1500. https://www.ijsr.net/getabstract.php?paperid=SR24320191712
- [23] Chanthati, S. R. (2024). Artificial Intelligence-Based Cloud Planning and Migration to Cut the Cost of Cloud. Sasibhushan Rao Chanthati. American Journal of Smart Technology and Solutions, 3(2), 13–24. https://doi.org/10.54536/ajsts.v3i2.3210
- [24] DhamotharanSeenivasan, "ETL (Extract, Transform, Load) Best Practices," International Journal of Computer Trends and Technology, vol. 71, no. 1, pp. 40-44, 2023. Crossref, https://doi.org/10.14445/22312803/IJCTT-V71I1P106
- [25] Shreyaskumar Patel "Performance Analysis of Acoustic Echo Cancellation using Adaptive Filter Algorithms with Rician Fading Channel" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 | Issue-2, February 2022, pp.1541-1547, URL: https://www.ijtsrd.com/papers/ijtsrd49144.pdf
- [26] Panwar, V. (2024). Optimizing Big Data Processing in SQL Server through Advanced Utilization of Stored Procedures. Journal Homepage: http://www.ijmra.us, 14(02).
- [27] Dixit, A., Sabnis, A. and Shetty, A., 2022. Antimicrobial edible films and coatings based on N, O-carboxymethyl chitosan incorporated with ferula asafoetida (Hing) and adhatodavasica (Adulsa) extract. *Advances in Materials and Processing Technologies*, 8(3), pp.2699-2715.
- [28] AmitMangal, 2024. Role of Enterprise Resource Planning Software (ERP) In Driving Circular Economy Practices in the United States, ESP Journal of Engineering & Technology Advancements 4(3): 1-8. [Link]
- [29] Chanthati, SasibhushanRao. (2021). Second Version on A Centralized Approach to Reducing Burnouts in the IT industry Using Work Pattern Monitoring Using Artificial Intelligence using MongoDB Atlas and Python. 10.13140/RG.2.2.12232.74249.
- [30] Dileep Kumar Pandiya, NileshCharankar, 2024, Testing Strategies with Ai for Microservices and Apis, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 13, Issue 04 (April 2024)
- [31] Chanthati, Sasibhushan Rao. (2021). How the Power of Machine Machine Learning, Data Science and NLP Can Be Used to Prevent Spoofing and Reduce Financial Risks. 10.13140/RG.2.2.18761.76640.
- [32] VenkataSathya Kumar Koppisetti, 2024. "Deep Learning: Advancements and Applications in Artificial Intelligence" ESP International Journal of Advancements in Computational Technology (ESP-IJACT) Volume 2, Issue 2: 106-113. [Link]
- [33] Ramesh, S. S., Anish Jose, Samraysh, P. R., Mulabagala, H., Minu, M. S., &Nomula, V. K. (2024). Domain Generalization and Multidimensional Approach for Brain MRI Segmentation Using Contrastive Representation Transfer Learning Algorithm. In P. Paramasivan, S. Rajest, K. Chinnusamy, R. Regin, & F. John Joseph (Eds.), Advancements in Clinical Medicine (pp. 17-33). IGI Global. https://doi.org/10.4018/979-8-3693-5946-4.ch002
- [34] Naga Ramesh Palakurti, Bridging the Gap: Frameworks and Methods for Collaborative Business Rules Management Solutions, International Scientific Journal for Research: Vol. 6 No. 6 (2024): ISJR

- [35] Kalla, Dinesh and Smith, Nathan and Samaah, Fnu and Polimetla, Kiran, Facial Emotion and Sentiment Detection Using Convolutional Neural Network (January 2021). Indian Journal of Artificial Intelligence Research (INDJAIR), Volume 1, Issue 1, January-December 2021, pp. 1–13, Article ID: INDJAIR_01_01_001, Available at SSRN: https://ssrn.com/abstract=4690960
- [36] PratikshaAgarwal, Arun Gupta, "Harnessing the Power of Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM) Systems for Sustainable Business Practices," International Journal of Computer Trends and Technology, vol. 72, no. 4, pp. 102-110, 2024. Crossref, https://doi.org/10.14445/22312803/IJCTT-V72I4P113
- [37] Shreyaskumar Patel "Performance Analysis of Acoustic Echo Cancellation using Adaptive Filter Algorithms with Rician Fading Channel" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-6 | Issue-2, February 2022, pp.1541-1547, URL: https://www.ijtsrd.com/papers/ijtsrd49144.pdf
- [38] Kalla, Dinesh, Nathan Smith, FnuSamaah, and KiranPolimetla. "Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction." Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1) 191 (2022): 2-7.
- [39] Borra, Praveen; Exploring Microsoft Azure's Cloud Computing: A Comprehensive Assessment International Journal of Advanced Research in Science, Communication and Technology 2 8, 897-906, 2022 IJARSCT.
- [40] Palakurti, N. R. (2024). Intelligent Security for Business Rules Management Systems: An Agent-Based Perspective. International Scientific Journal for Research, 6(6), 1-20.
- [41] "Secure and Ethical Innovations: Patenting Ai Models for Precision Medicine, Personalized Treatment, and Drug Discovery in Healthcare". (2023). International Journal of Business Management and Visuals, ISSN: 3006-2705, 6(2), 1-8. https://ijbmv.com/index.php/home/article/view/60
- [42] Bodapati, J.D., Veeranjaneyulu, N. & Yenduri, L.K. A Comprehensive Multi-modal Approach for Enhanced Product Recommendations Based on Customer Habits. J. Inst. Eng. India Ser. B (2024). https://doi.org/10.1007/s40031-024-01064-5
- [43] ArchanaBalkrishna, Yadav (2024) An Analysis on the Use of Image Design with Generative AI Technologies. International Journal of Trend in Scientific Research and Development, 8 (1). pp. 596-599. ISSN 2456-6470
- [44] S. E. VadakkethilSomanathanPillai and K. Polimetla, "Integrating Network Security into Software Defined Networking (SDN) Architectures," 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), Raichur, India, 2024, pp. 1-6, doi: 10.1109/ICICACS60521.2024.10498703.
- [45] Naga Ramesh Palakurti, 2023. AI-Driven Personal Health Monitoring Devices: Trends and Future Directions, ESP Journal of Engineering & Technology Advancements 3(3): 41-51. [PDF]
- [46] Chanthati, S. R. (2024). Website Visitor Analysis & Branding Quality Measurement Using Artificial Intelligence. Sasibhushan Rao Chanthati. https://journals.e-palli.com/home/index.php/ajet. https://doi.org/10.54536/ajet.v3i3.3212
- [47] Kumar Shukla, Shashikant Tank, 2024. "CYBERSECURITY MEASURES FOR SAFEGUARDING INFRASTRUCTURE FROM RANSOMWARE AND EMERGING THREATS", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN: 2349-5162, Vol.11, Issue 5, page no.i229-i235, May-2024, Available: http://www.jetir.org/papers/JETIR2405830.pdf
- [48] Jacopo Pianigiani, Manish Krishnan, Anantharamu Suryanarayana, Vivekananda Shenoy, 2020. Cloud Network Having Multiple Protocols Using Virtualization Overlays across Physical and Virtualized Workloads, US10880210B2. [Link]
- [49] Shashikant Tank, Kumar Shukla, 2024."A COMPARATIVE ANALYSIS OF NVMe SSD CLASSIFICATION TECHNIQUES", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN: 2349-5162, Vol.11, Issue 5, page no.c261-c266, May-2024, Available: http://www.jetir.org/papers/JETIR2405231.pdf
- [50] Chandrakanth Lekkala (2023) Deploying and Managing Containerized Data Workloads on Amazon EKS. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-342. DOI: doi.org/10.47363/JAICC/2023 (2)324.
- [51] Patel, N. (2024, March). SECURE ACCESS SERVICE EDGE(SASE): "EVALUATING THE IMPACT OF CONVEREGED NETWORK SECURITYARCHITECTURES IN CLOUD COMPUTING." Journal of Emerging Technologies and Innovative Research. https://www.jetir.org/papers/JETIR2403481.pdf
- [52] Ayyalasomayajula, Madan Mohan Tito, Sathishkumar Chintala, and Sandeep Reddy Narani. "Optimizing Textile Manufacturing With Neural Network Decision Support: An Ornstein-Uhlenbeck Reinforcement Learning Approach." Journal of Namibian Studies: History Politics Culture 35 (2023): 335-358.
- [53] Vishwanath Gojanur, Aparna Bhat, "Wireless Personal Health Monitoring System", IJETCAS:International Journal of Emerging Technologies in Computational and Applied Sciences, eISSN: 2279-0055, pISSN: 2279-0047, 2014. [Link]
- [54] Ayyalasomayajula, Madan Mohan Tito, et al. "Proactive Scaling Strategies for Cost-Efficient Hyperparameter Optimization in Cloud-Based Machine Learning Models: A Comprehensive Review." ESP Journal of Engineering & Technology Advancements (ESP JETA) 1.2 (2021): 42-56.
- [55] Mistry, H., Shukla, K., & Patel, N. (2024). Transforming Incident Responses, Automating Security Measures, and Revolutionizing Defence Strategies through AI-Powered Cybersecurity. Journal of Emerging Technologies and Innovative Research, 11(3), 25. https://www.jetir.org/

- [56] Ayyalasomayajula, M., & Chintala, S. (2020). Fast Parallelizable Cassava Plant Disease Detection using Ensemble Learning with Fine Tuned AmoebaNet and ResNeXt-101. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 3013–3023.
- [57] Aparna Bhat, "Comparison of Clustering Algorithms and Clustering Protocols in Heterogeneous Wireless Sensor Networks: A Survey," 2014 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)-ISSN: 2349-4689 Volume 04- NO.1, 2014. [Link]
- [58] Ayyalasomayajula, Madan Mohan Tito, et al. "Implementing Convolutional Neural Networks for Automated Disease Diagnosis in Telemedicine." 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024.
- [59] Shashikant Tank Kumar Mahendrabhai Shukla, Nimeshkumar Patel, Veeral Patel, 2024." AI BASED CYBER SECURITY DATA ANALYTIC DEVICE", 414425-001, [Link]
- [60] Ayyalasomayajula, Madan Mohan Tito, Akshay Agarwal, and Shahnawaz Khan. "Reddit social media text analysis for depression prediction: using logistic regression with enhanced term frequency-inverse document frequency features." International Journal of Electrical and Computer Engineering (IJECE) 14.5 (2024): 5998-6005.
- [61] Aparna Bhat, Rajeshwari Hegde, "Comprehensive Study of Renewable Energy Resources and Present Scenario in India," 2015 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, TN, India, 2015. [Link]
- [62] Ayyalasomayajula, Madan Mohan Tito. "Innovative Water Quality Prediction For Efficient Management Using Ensemble Learning." Educational Administration: Theory and Practice 29.4 (2023): 2374-2381.
- [63] Sarangkumar Radadia Kumar Mahendrabhai Shukla ,Nimeshkumar Patel ,Hirenkumar Mistry,Keyur Dodiya 2024."
 CYBER SECURITY DETECTING AND ALERTING DEVICE", 412409-001, [Link]
- [64] Ayyalasomayajula, Madan Mohan Tito, Srikrishna Ayyalasomayajula, and Sailaja Ayyalasomayajula. "Efficient Dental X-Ray Bone Loss Classification: Ensemble Learning With Fine-Tuned VIT-G/14 And Coatnet-7 For Detecting Localized Vs. Generalized Depleted Alveolar Bone." Educational Administration: Theory and Practice 28.02 (2022).
- [65] Aparna K Bhat, Rajeshwari Hegde, 2014. "Comprehensive Analysis Of Acoustic Echo Cancellation Algorithms On DSP Processor", International Journal of Advance Computational Engineering and Networking (IJACEN), volume 2, Issue 9, pp.6-11. [Link]
- [66] Ayyalasomayajula, M. M. T., Chintala, S., & Sailaja, A. (2019). A Cost-Effective Analysis of Machine Learning Workloads in Public Clouds: Is AutoML Always Worth Using? International Journal of Computer Science Trends and Technology (IJCST), 7(5), 107–115.
- [67] Nimeshkumar Patel, 2022." QUANTUM CRYPTOGRAPHY IN HEALTHCARE INFORMATION SYSTEMS: ENHANCING SECURITY IN MEDICAL DATA STORAGE AND COMMUNICATION", Journal of Emerging Technologies and Innovative Research, volume 9, issue 8, pp.g193-g202. [Link]
- [68] Bhat, A., & Gojanur, V. (2015). Evolution Of 4g: A Study. International Journal of Innovative Research in ComputerScience & Engineering (IJIRCSE). Booth, K. (2020, December 4). How 5G is breaking new ground in the construction industry. BDC Magazine.https://bdcmagazine.com/2020/12/how-5g-is-breaking-new-ground-in-the-constructionindustry/. [Link]
- [69] Nimeshkumar Patel, 2021." SUSTAINABLE SMART CITIES: LEVERAGING IOT AND DATA ANALYTICS FOR ENERGY EFFICIENCY AND URBAN DEVELOPMENT", Journal of Emerging Technologies and Innovative Research, volume 8, Issue 3, pp.313-319. [Link]
- [70] Bhat, A., Gojanur, V., & Hegde, R. (2014). 5G evolution and need: A study. In International conference on electrical, electronics, signals, communication and optimization (EESCO) 2015. [Link]
- [71] Chintala, S. ., & Ayyalasomayajula, M. M. T. . (2019). OPTIMIZING PREDICTIVE ACCURACY WITH GRADIENT BOOSTED TREES IN FINANCIAL FORECASTING. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(3), 1710–1721. https://doi.org/10.61841/turcomat.v10i3.14707
- [72] A. Bhat, V. Gojanur, and R. Hegde. 2015. 4G protocol and architecture for BYOD over Cloud Computing. In Communications and Signal Processing (ICCSP), 2015 International Conference on. 0308-0313. Google Scholar. [Link]
- [73] Ankitkumar Tejani, Harsh Gajjar, Vinay Toshniwal, Rashi Kandelwal, 2022. "The Impact of Low-GWP Refrigerants on Environmental Sustainability: An Examination of Recent Advances in Refrigeration Systems" ESP Journal of Engineering & Technology Advancements 2(2): 62-77. [Link]
- [74] Ankitkumar Tejani, Jyoti Yadav, Vinay Toshniwal, Harsha Gajjar, 2022. "Natural Refrigerants in the Future of Refrigeration: Strategies for Eco-Friendly Cooling Transitions", ESP Journal of Engineering & Technology Advancements, 2(1): 80-91. [Link]
- [75] Vikramrajkumar Thiyagarajan, 2024. "Financial Transformation: Redefining Consolidation Processes with Oracle FCCS", International Journal of Innovative Research of science, Engineering and technology (IJIRSET), Volume 13, Issue 9, [Link]
- [76] Gokul Ramadoss , 2022." Care and Disease Management: Why Managed Care Organizations (MCOs) Need to have an Inclusive Approach to Patient Care", Progress in Medical Science, VOL 6, NO. 3, PAGE 1 5, [Link]

- [77] Gokul Ramadoss , 2022." EHR & EMR A Wholesome View on its Impact in EDI Transaction", Progress in Medical Science, VOL 6, NO. 5, PAGE 1 4, [Link]
- [78] Ali, A., Ahmad, M., Nawaz, S., Raza, T., & Sunil Kumar Suvvari (2022). An effective structure for data management in the cloud-based tools and techniques. *Journal of Engineering Science*, 15(4), 215-228. https://journal.esrgroups.org/jes/article/view/5519/3943
- [79] Roman, B., & Sunil Kumar Suvvari (2021). *Social Media Control Version* 1.2. Roman Publications. https://romanpub.com/resources/smc-v1-2-2021-7.pdf
- [80] Radhika Kanubaddhi, "Real-Time Recommendation Engine: A Hybrid Approach Using Oracle RTD, Polynomial Regression, and Naive Bayes," SSRG International Journal of Computer Science and Engineering , vol. 8, no. 3, pp. 11-16, 2021. Crossref, https://doi.org/10.14445/23488387/IJCSE-V8I3P103
- [81] Radhika Kanubaddhi, 2022. "Designing an Enterprise-Grade, Cloud-Native Chatbot Solution for the Hospitality Industry Using Azure QnA Maker and Azure LUIS", ESP Journal of Engineering & Technology Advancements, 2(1): 56-62. https://espjeta.org/jeta-v2i1p108